Lattice Thermal Conductivities and Phonon
Properties of FPU based Lattices and Graphene
with Layers, Grain Boundaries and Strain

Submitted in partial fulfillment of the requirements

of the degree of
Doctor of Philosophy

by

Kunwar Abhikeern
(Roll No. 184106014)

Supervisor
Prof. Amit Singh

Department of Mechanical Engineering
INDIAN INSTITUTE OF TECHNOLOGY BOMBAY
2024






Dedicated to my advisor

Prof. Amit Singh

Dedicated to my parents

and friends






APPROVAL SHEET

This thesis entitled ‘Lattice Thermal Conductivities and Phonon Properties of FPU based

Lattices and Graphene with Layers, Grain Boundaries and Strain’ by Kunwar Abhikeern is

approved for the degree of Doctor of Philosophy.

Examiners

qs\b[\;g\.w\ 'Dl\o\v -

Prof. Abhishek Dhar

Ihasgfls

Prof. Titas Dasgupta

Supervisors

Pl s,

Prof. Amit Singh

Chairperson

/‘WN\JV&?

;f _Prof. Bhaskaran

S

Muralidharan

Date: 15/04/2025

Place: UT Bombay, Mumbai






Declaration

I declare that this written submission represents my ideas in my own words, and where
others’ ideas or words have been included, I have adequately cited and referenced the
original sources. I also declare that I have adhered to all principles of academic honesty
and integrity and have not misrepresented or fabricated, or falsified any idea/data/fact
/source in my submission. I understand that any violation of the above will cause dis-
ciplinary action by the Institute and can also evoke penal action from the sources which
have thus not been properly cited or from whom proper permission has not been taken

when needed.

) R \eeo M.
Zﬁlm@[ﬁb s

Date:

Kunwar Abhikeern

Roll No. 184106014






INDIAN INSTITUTE OF TECHNOLOGY BOMBAY, INDIA

CERTIFICATE OF COURSE WORK

This is to certify that Kunwar Abhikeern (Roll No. 184106014) was ad-
mitted to the candidacy of Ph.D. degree on 01 January 2019, after suc-

cessfully completing all the courses required for the Ph.D. programme.

The details of the course work done are given below.

S.No | Course Code | Course Name Credits
1| ME 751 Mechanics of Deformable Bodies 6
2 | MES 801 Seminar 4
3 | MM 722 Molecular Simulations for Mateirals Engineering 6
4 | HS613 Finite Element and Boundary Element Methods 6
5| ME775 Mechanisms in Crystal Plasticity 6
6 | HS791 Communication Skills -I PP
7 | HS 791 Communication Skills -II PP
8 | GC101 Gender in the workplace PP
9 | ME 673 Mathematical Methods in Engineering AU

10 | ME 673 Introduction to Condensed Matter Physics I AU
Total Credits 28
IIT Bombay
Date: Dy. Registrar (Academic)







Abstract

In the field of graphene and other two-dimensional (2D) materials, significant progress
has been made in understanding the thermal conductivity (TC) using various com-
putational methods. Using nonequilibrium molecular dynamics (NEMD) based di-
rect method and spectral energy density (SED) based normal mode decomposition
(NMD) method, we calculate the size-dependent TCs of single layer graphene (SLG),
AB-stacked bilayer graphene (AB-BLG) and 21.78° twisted BLG (tBLG) in a robust and
consistent manner. Our NEMD analysis reveals discrepancies in the high TC reported
for graphene systems in some of the earlier studies. Similarly, some of the previous
NMD based studies were done with unreliable SED &' approach. We conduct size-
dependent analysis of the graphene systems by the NMD method for the first time and
report that bulk TCs for SLG and tBLG systems are nearly the same when calculated
by either the direct or the NMD method. Contrary to studies which claim that phonon
group velocities of AB-BLG and tBLG samples do not change, we find that although
average group velocities in SLG and AB-BLG are almost the same but they are around
30% higher when compared to tBLG samples with different twist angles. On the other
hand, average phonon lifetimes are almost similar for AB-BLG and 21.78° tBLG sam-
ples but around 43% lower than SLG’s average phonon lifetime. Together these trends
suggest the reason behind the decreasing order of TCs across three systems. We also
systematically study the basic phonon mode contributions to TCs and their properties

and find that the high-symmetry modes contribute the most in all three systems.

In one of the other studies using NMD method, we predict the phonon scattering
mean lifetimes of polycrystalline graphene (PC-G) having polycrystallinity only along
x-axis with seven different misorientation (tilt) angles at room temperature. Contrary
to other studies on PC-G samples, our results indicate strong dependence of the TC on

the tilt angles. We also show that the square of the group velocity components along x
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and y axes and the phonon lifetimes are uncorrelated and the phonon density of states
are almost the same for all samples with different tilt angles. Further, a distribution
of the group velocity component along x or y axis as function of normal frequency is
found to be exponentially decaying whereas that of phonon lifetime showed piecewise
constant function behavior with respect to frequency. We provide parameters for these
distribution functions and suggest another measure of the TC based on these distri-
butions. Finally, we perform a size-dependent analysis for two tilt angles, 21.78° and
32.20°, and find that bulk TC components decrease by around 34% to 62% in comparison
to the bulk TC values of the pristine graphene. Our analysis reveals intriguing insights

into the interplay between grain orientation, phonon scattering and TC in graphene.

In another related study, we investigated the impact of applied strain on the TC of
SLG, with a focus on phonon behavior and energy transport mechanisms. Using NMD
analysis, we decompose the phonon modes across the frequency spectrum to under-
stand how strain affects thermal transport. Molecular dynamics (MD) simulations are
conducted to calculate phonon group velocities, phonon lifetimes and TC for SLG under
varying degrees of strain. The results reveal significant changes in the phonon disper-
sion curves, particularly for the out-of-plane acoustic (ZA) modes, which exhibit a shift
from quadratic to linear behavior as strain increases. Additionally, the study shows a
decrease in phonon group velocities with strain, while phonon lifetimes remain rela-
tively unaffected. These findings provide insights into the scattering mechanisms and
energy transport properties in strained graphene, offering valuable information for po-

tential applications in nanoelectronics and thermal management systems.

Finally, in order to further deepen our understanding of thermal transport in real
solids, a study was conducted to explore the use of the Fermi-Pasta-Ulam (FPU)- po-
tential model in examining TC in 2D materials. For the very first time this study in-
vestigates the thermal transport properties of 2D anharmonic solids using the FPU-/
potential model, providing insights into the nonlinear phonon interactions that govern
TC behavior. By employing a dual-method approach, comprising equilibrium molecu-
lar dynamics-based Green-Kubo (GK) analysis and the NMD method, we explain the
mechanisms influencing TC of such system. Through GK method we reveal a logarith-
mic dependence of TC on time, underscoring the significance of temporal evolution in

heat conduction dynamics. While on the other hand, using NMD method, we exam-
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ine phonon lifetimes and group velocities for the first time within this framework. The
study highlights size-dependent behavior, with TC exhibiting logarithmic divergence
as system size increases, attributed to the characteristic behaviour of the phonon life-
time and group velocity dependence on the system size. The combined insights from
GK and NMD methods present a comprehensive understanding of thermal transport
in the FPU-f system, laying the groundwork for future research that aims to develop a
generalized analytical model for TC by varying the anharmonicity parameter, 5. This
work is expected to enhance the design of materials with optimized thermal properties

for advanced applications in electronics and energy technologies.
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Chapter 1
Introduction

1.1 Motivation

As technology continues to advance, industries such as aerospace, nuclear science, and
electronics are facing significant challenges related to thermal management. Conven-
tional materials like copper, silicon, and aluminum, which have been the cornerstone
of these industries, are unable to meet the demands for efficient heat dissipation, es-
pecially in high-performance and miniaturized systems. Overheating remains a crit-
ical bottleneck in these fields, leading to decreased efficiency, reduced lifespan, and,
in some cases, catastrophic failure of devices. Graphene, with its extraordinary ther-
mal conductivity (TC), presents a groundbreaking solution to these challenges. This
two-dimensional carbon material offers thermal performance far superior to traditional
materials, making it as a key contender for future technologies where heat management

is essential.

Graphene’s ability to adjust its TC through structural modifications like grain bound-
aries (GBs) and nano-inclusions makes it highly versatile for technical applications.

For example, in thermal interface materials (TIMs), graphene with controlled thermal



properties significantly improves heat transfer between processors and heat sinks, en-
hancing the performance of electronics [1, 2]. In thermoelectric generators, modified
graphene reduces heat conduction while maintaining electrical properties, improving
energy conversion efficiency [3]. Due to its exceptionally high TC, graphene is regarded
as an ideal filler for producing polymer composites with superior TC [4]. Graphene-
based composites offer significant potential for the space industry by enhancing the
electrothermal properties of lightweight polymer components, enabling efficient tem-
perature control and de-icing, while maintaining the polymer’s structural integrity.
This scalable and cost-effective approach makes them ideal for aerospace applications
[5]. In the electronics industry, graphene can be used as a heat spreader to manage ther-
mal loads in high-performance transistors and light-emitting diodes (LEDs) [6]. Ad-
ditionally, graphene’s thermal properties are being explored in energy storage systems,
such as batteries and supercapacitors, to manage heat during charge and discharge cy-

cles, enhancing safety and performance [7, 8].

Thus, the motivation for utilizing graphene lies in its potential to transform how
heat is handled in critical technologies, pushing the boundaries of what is possible in
sectors that depend on reliable, high-performance thermal solutions. By harnessing
graphene’s exceptional properties, we can address the current limitations of existing
materials and pave the way for more efficient, sustainable, and safer technologies across

multiple industries.

1.2 Background

Graphene, the first truly two-dimensional material, was discovered in 2004 by Andre
Geim and Konstantin Novoselov using a simple yet ingenious technique known as the
"Scotch tape method". By peeling off layers from bulk graphite with adhesive tape,
they successfully isolated a single layer of carbon atoms arranged in a hexagonal lattice
Fig. 1.1. This groundbreaking discovery, which earned them the Nobel Prize in Physics

in 2010, opened up an entirely new field in materials science [9].

Graphene has the sp? hybridization of carbon atoms which forms a stable, highly

conductive honeycomb lattice with strong carbon-carbon bonds. These robust bonds



Graphite flakes

Figure 1.1: ‘Scotch tape’ procedure, reported by Novoselov and Geim in 2004. Picture
adapted from [9]

allow efficient energy transfer between atoms, making graphene an exceptional heat
conductor. These energy carriers in the case of graphene are "phonons", which are
quantized vibrational modes within a crystal lattice and the primary carriers of heat
in non-metallic materials. In bulk materials, phonon transport is typically limited by
various scattering mechanisms, such as phonon-phonon interactions and impurities.
However, in 2D structures like graphene, phonons behave differently due to the re-
stricted dimensionality. The reduction in available scattering channels allows phonons
to travel over longer distances with minimal resistance, resulting in a nearly ballistic
transport regime. This unique phonon behavior is crucial to graphene’s exceptional

thermal performance and highlights the importance of studying 2D materials.

Another important consideration is the study of thermal transport in solids which
requires an understanding of both harmonic and anharmonic phonon interactions. While
Pierre Debye [10] laid the foundation for describing phonon dispersions and equilib-
rium thermodynamic properties, subsequent studies by Peierls [11] and Ziman [12] ex-
tended these ideas to include phonon-phonon interactions and heat conduction mech-
anisms in solids, emphasizing the role of nonlinearity in relaxation and transport. The
simplest model, which assumes a lattice of harmonic oscillators, leads to an unrealis-
tic scenario - any initial disturbance does not settle into equilibrium but instead fre-

quently returns to a state close to its starting point. Additionally, energy transport
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in such a model is purely ballistic, with each Fourier component carrying energy un-
changed through the lattice at the speed of sound. Recognizing these limitations, Peierls
introduced the concept of phonon-phonon scattering, which allowed for a more re-
alistic description of heat conduction by incorporating anharmonic effects [11]. This
marked the transition from purely harmonic models to a more comprehensive picture
of thermal transport that included relaxation processes. In the 1930s, the inclusion of
nonlinear terms in a perturbative quantum-mechanical framework allowed Rudolph
Peierls to successfully explain the thermodynamic behavior of solids at very low tem-
peratures. However, while these studies primarily focused on equilibrium properties,
advancements in non-equilibrium statistical mechanics later revealed new complexi-
ties in phonon transport, particularly in low-dimensional systems where fluctuations
dominate. Later, Enrico Fermi, John Pasta, and Stanley Ulam took on the challenge
of studying the relaxation and transport properties of lattices of nonlinear classical
oscillators. Their pioneering numerical experiments sparked an immense wave of re-
search, shaping the understanding of nonlinear dynamics. These studies laid the foun-
dation for exploring anomalous heat conduction in low-dimensional systems, where
strong long-range correlations lead to deviations from standard hydrodynamic behav-
ior and even violations of Fourier’s law [13]. Initial studies of phonon dynamics were
done in 1D systems, and this has led us to further extend the investigation to 2D sys-
tems. Unlike bulk materials, where heat transport follows well-established diffusion
laws, low-dimensional materials exhibit unique transport mechanisms governed by col-
lective phonon interactions, making their thermal properties fundamentally different
from their three-dimensional counterparts. Originally developed to investigate nonlin-
ear dynamics in lattice systems [14], the Fermi-Pasta-Ulam (FPU)-3 model effectively
captures the essence of anharmonic phonon interactions, key factors that influence TC
[15]. By studying the 2D FPU-/5 potential, researchers can explore how nonlinearities
affect phonon dynamics, offering new insights into the behaviour of heat conduction in
2D materials. This has direct implications for nanoscale thermal management, where
engineering phonon interactions can lead to enhanced control over heat transport in
nanomaterials and next-generation energy applications. Thus, this research can pave
the way for designing the next generation of high TC materials, as it provides a detailed

view of phonon interactions that are otherwise difficult to observe experimentally.



1.3 Challenges in the Study of 2D Materials

1.3.1 Experimental Challenges

Experimental challenges in the production of graphene significantly impact the accu-
racy of TC measurements. Variability in measurement techniques, such as Raman spec-
troscopy [16], electrical self-heating [17], and opto-thermal methods [18, 19, 20, 21, 22],
can lead to a wide range of reported TC values due to their inherent limitations and po-
tential sources of error. Additionally, the quality and preparation of graphene samples
are critical; defects, impurities, and grain boundaries can reduce TC, and variations in
sample preparation methods like chemical vapor deposition (CVD) [21] or mechanical
exfoliation [23] can further influence measurements. Size and edge effects also play a
role, as graphene nanoribbons exhibit different TCs compared to larger graphene sheets
due to edge scattering and confinement effects. Environmental factors and substrate in-
teractions can also affect thermal properties, with supported graphene often showing
lower TC compared to suspended graphene [24]. Given these challenges, computa-
tional studies of graphene become essential to complement experimental data, provid-
ing detailed insights into its thermal behavior and helping to bridge the gaps caused

by variability in experimental techniques and sample conditions Fig. 1.2.

1.3.2 Theoretical Challenges

Given the complexities involved in understanding the atomic-level mechanisms behind
TC, computational studies have become indispensable. Experimental methods, while
crucial, often fall short when it comes to probing the microscopic details of phonon
transport. Computational simulations allow scientists to model phonon behavior in
graphene under a variety of conditions, offering a detailed analysis of how structural
and environmental changes impact TC. These studies not only complement experimen-
tal efforts but also provide predictive power, guiding the discovery of materials with
tailored thermal properties and pushing the boundaries of what is achievable with 2D

systems [1, 2].
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Figure 1.2: Schematic illustrating the theory and modeling, experimental processes,
and device applications of graphene. There are gaps between theories at various scales

and between experimental outcomes and their real-world impacts [25]



Theoretical| Theoretical Basis Temperature Statistics Drawbacks

Method

Kinetic Treats phonons as particles | Limited to sim- | Basic statistical | Limited applicability for

Theory of | ina gas. ple, bulk mate- | mechanics. low-dimensional systems

Gases [26] rials. and complex interactions.

Debye Considers quantum me- | Applicable at | Uses Debye’s | Assumes simple linear

Model chanical nature of phonons | low  tempera- | approximation | phonon dispersion; less

[27] and their distribution. tures. for phonon | accurate for complex ma-
modes. terials.

Ab Initio | Solves quantum mechani- | Highly accurate | Uses first- | Extremely  computation-

Methods | cal equations for phononic | across tempera- | principles ally demanding, often

(DFT  + | properties using first- | ture ranges. methods. requiring access to high-

BTE) [28] | principles calculations. performance computing

systems.

Boltzmann | Incorporates phonon scat- | Broad tempera- | Solves BTE nu- | Complex analytical solu-

Transport | tering mechanisms and de- | ture range. merically. tions and computational

Equa- tailed phonon dispersion demands.

tion (BTE) | relations.

[29,30,31]

Green- Uses time-correlation func- | Effective across | Relies on Green- | Requires long simulation

Kubo tions from equilibrium MD | various temper- | Kubo relations. | times and significant com-

Formal- simulations. atures. putational resources.

ism [32]

Non- Quantum transport theory | Broad tempera- | Non- Complex setup and highly

equilibrium| that calculates thermal | ture range. equilibrium computational; sensitive to

Green’s transport in nanostruc- statistics. boundary conditions and

Function | tures by modeling phonon scaling to large systems.

(NGEF) and electron interactions.

[33]

Table 1.1: Comparative overview of theoretical methods used for studying thermal con-

ductivity




The table 1.1 provides a comparative overview of various theoretical methods used
to study TC in materials. It outlines the theoretical basis, temperature applicability,
statistical approaches, and drawbacks of each method. This comprehensive comparison
helps in understanding the evolution of these methods and their respective strengths

and limitations, offering valuable insights into their application in TC research.

Thus, the combined use of experimental and computational approaches in study-
ing graphene and other 2D materials enhances our understanding of thermal trans-
port mechanisms and drives the development of innovative materials. By exploring
the high TC of graphene and utilizing models like the 2D FPU-j potential, researchers
are unlocking new possibilities for the next generation of smart materials, capable of

revolutionizing applications in electronics, energy management, and beyond.

1.4 Overview and Scope

The primary aim of this thesis is to explore how different factors influence TC in graphene
and related 2D materials. This research delves into the comparative analysis of single
layer and bilayer graphene, the thermal properties of polycrystalline graphene, and the
application of the FPU potential model to investigate TC in 2D systems. Each chapter
builds upon the methodologies and findings, providing a comprehensive understand-

ing of TC in these advanced materials.

Chapter 2 serves as a literature survey, laying the groundwork for the subsequent
chapters. It provides an in-depth review of the existing studies on TC in graphene
and related 2D materials, highlighting key advancements and identifying gaps that
this thesis aims to address. This background sets the stage for the methodologies and

research questions explored in the later chapters.

Chapter 3 details the various methodologies employed throughout the thesis, of-
fering a thorough understanding of the computational and theoretical techniques used.
This chapter includes discussions on molecular dynamics simulations, spectral energy
density analysis, and the implementation of the FPU beta potential model. It acts as a
guide to the methods applied across the thesis, ensuring that the approaches are robust

and appropriate for studying TC in 2D materials.
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Chapter 4 focuses on comparing the TCs and phonon properties of single layer
graphene (SLG) and bilayer graphene (BLG). By examining the phonon behavior and
scattering mechanisms in these materials, the chapter provides insights into how the
addition of layers affects thermal transport. Both theoretical models and experimental
data are used to reveal the differences between SLG and BLG, contributing valuable

information for designing graphene-based materials with tailored thermal properties.

Chapter 5 focuses on the TC of polycrystalline graphene, which is investigated
using the Spectral Energy Density (SED) method. This chapter emphasizes the role
of grain boundaries in heat conduction by analyzing the contributions of individual
phonon modes. The preparation of polycrystalline samples and the application of the
SED method are discussed in detail, highlighting the significant impact of grain bound-

aries on TC compared to single-crystal graphene.

Chapter 6 explores the effects of strain and ripple on graphene’s thermal proper-
ties. This chapter examines how mechanical deformations influence phonon transport
and TC in graphene, providing insights into the mechanical-thermal coupling that can

be leveraged to engineer materials with desired thermal characteristics.

Chapter 7 delves into the FPU-/3 potential model to study TC in 2D materials. The
FPU model is employed to capture the non-linear and anharmonic phonon interactions
in graphene and other 2D structures, offering a novel perspective on phonon transport
mechanisms. The chapter covers the theoretical foundation of the FPU model, its im-
plementation in molecular dynamics simulations, and the implications of the findings

for future high-TC materials.

Finally, Chapter 8 summarizes the key results and insights gained throughout the
thesis. It discusses the broader implications of the research, highlighting how the find-
ings enhance our understanding of thermal transport in 2D materials. The chapter con-
cludes with recommendations for future work, particularly in the context of designing

the next generation of high-performance 2D systems.
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Chapter 2

Literature Survey

This chapter provides a comprehensive review of the existing literature on the ther-
mal properties of graphene and other two-dimensional (2D) materials, with a partic-
ular focus on their atomistic-scale behaviors. Graphene, with its exceptional thermal
and mechanical properties, has been extensively studied; however, the complexity of
real-world conditions introduces various factors that significantly influence its behav-
ior. This survey focuses on four critical aspects of graphene research: bilayer graphene
(BLG), single layer graphene (SLG) with grain boundaries, graphene under strain and
ripples, and the application of the Fermi-Pasta-Ulam (FPU)-3 potential to 2D materials.

Section 2.1 explores bilayer graphene (BLG), stressing its practical application due
to its high thermal conductivity (TC). Next, we discuss the varied reported experimen-
tal studies, which is then followed by the theoretical and computational study of its
thermal properties in previous studies which have used inconsistent especially high-

lighting use of some of the inconsistent methods.

In Section 2.2 we focus our attention to the TC of single layer graphene (SLG)
across grain boundaries (GBs). While SLG is known for its exceptional TC, the presence

of GBs, especially in polycrystalline graphene (PC-G), disrupts phonon transport and
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reduces thermal efficiency. This section reviews both experimental and computational
studies examining the influence of grain size, GB orientation, and dislocation density on
TC. Additionally, it highlights the need for further investigation into phonon dynamics,
such as phonon lifetimes and group velocities, in these systems as none of these works

investigate the microstructural properties of the TC of PC-G samples.

While SLG is renowned for its high TC, the introduction of strain and ripples alters
its phonon transport behavior, leading to its reduced efficiency. Section 2.3 reviews
experimental and computational studies that explore how in-plane strain and ripple
formation affect TC. Previous findings show that ripple and strain together can cause
significant reductions in TC, largely due to changes in phonon dispersion and out-of-
plane distortions while stressing on the fact that none had been able to decouple the

strain and ripple while studying the changes in the TC of graphene.

Finally, Section 2.4 discusses the thermal transport in the FPU-3 potential in 2D
system such as square and triangular lattices. The section highlights about the limited
study that have been done in terms of study of phonon dynamics in 1D system but
we found a clear gap in the study of phonon dynamics in 2D systems. Additionally,
we also address the previous studies with regards to the non-linearity, disorder, and

temperature dependence, anharmonicity effects, etc in 2D system.

Together, these sections will provide a critical evaluation of the current research
landscape and highlight the gaps that this thesis aims to address. By integrating find-
ings across these four domains, this literature survey will lay the foundation for un-
derstanding the atomistic-scale thermal behavior of 2D materials and contribute to the

development of advanced applications in thermal management and nano-engineering.

2.1 Thermal Conductivity of Single and Bilayer Graphene

The thermal conduction in single and bilayer graphene has received significant atten-
tion over the years and several applications have also emerged considering very high
TC of graphene e.g. in thermal interface materials, hybrid phase change materials [34],
heat spreaders [35], etc. Some potential applications have also been suggested such

as temperature sensors, thermoelectric sensors and thermal biosensors [36]. A range
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of values has been reported for the high TC of suspended single layer graphene (SLG)
from the perspective of both experimental and computational techniques. Using micro-
Raman spectroscopy, Balandin et al. [37] and Ghosh et al. [38] showed that the TC of
SLG near room temperature is in the range from 2000 W/mK to 5300 W/mK depending
upon different sample sizes and qualities. When SLG was grown by chemical vapor de-
position method and the TC was measured with the Raman optothermal method, Cai et
al. [39] reported the value to be around 2500+ 1100 W/mK. On the theoretical and com-
putational side, Renteria et al. [34] reviewd several studies for the TC of supported SLG
and noted a range of values between 100 W/mK and 8000 W/mK depending upon dif-
ferent sizes, defect concentrations and methods used for calculating the TC. Using clas-
sical molecular dynamics (MD) simulations, the optimized REBO [40] as the classical
interatomic potential between carbon-carbon (C-C) atoms and the Green-Kubo method
for the TC calculation where heat flux was calculated using Irving and Kirkwood’s [41]
or Hardy’s [42] definition, Hengzi Zhang et al. [43] found the TC of pristine SLG to be
around 2903 £ 93 W/mK at 300 K. In another work, Y. Y. Zhang et al. [44] performed
non-equilibrium molecular dynamics (NEMD) simulations over 254.2 x 60.9 A2 SLG
where the C-C bond interaction was modeled by AIREBO [45] potential, used Muller-
Plathe’s approach for maintaining the temperature gradient between hot and cold ends,
and obtained the TC around 550 W/mK near the room temperature. In another NEMD
simulation based study, Cao [46] used the optimized Tersoff [40] potential and em-
ployed two different methods, heat flux control and temperature control methods, for
setting up the temperature gradient between hot and cold regions and calculating the
heat flux, and found the TC of 2.8 ym long-SLG to be around 2360 W/mK. Park et
al. [47] similarly used the same optimized Tersoff potential for their NEMD simula-
tions and obtained 3200 W/mK as the bulk (length L — oo) [48, 49] TC value, how-
ever, it has to be noted that they used the rate of change of difference in energy of the
thermostatted hot and cold regions for the calculation of the heat flux which we call
“thermostat work done (TWD)” method. In another Green-Kubo method based MD
work, Chen and Kumar [50] used the optimized Tersoff potential and calculated the TC
of 60 x 60 A% suspended SLG as 1779.7 W/mK at 300 K temperature with the help of
Irving and Kirkwood'’s [41] heat flux derivation. Using Boltzmann transport equation

(BTE) based relaxation time approach (RTA), they also calculated the TCs of both sus-
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pended SLG and SLG supported on copper where the values of phonon lifetimes were
obtained by fitting the spectral energy density (SED) curves to the Lorentzian function.
This approach revealed the in-plane TC around 1606.7 W/mK for the suspended SLG of
28 unit cell size (~ 69 A) along z-axis. Qiu and Ruan [51] performed MD simulations in
combination with SED analysis over 4.4 x 4.3 nm? suspended SLG and SLG supported
on a silicon dioxide substrate where C-C interactions were modeled by the optimized
Tersoff potential. They reported the phonon relaxation times for the suspended SLG
up to 50 ps. They also calculated the TC [52] of SLG whose value before the quantum
correction was found to be 1626 W/mK at 300 K. Zou et al. [53] studied the effect of dif-
ferent interatomic potentials on the dispersion curves and thermal transport properties
such as phonon relaxation time and TC and found that the optimized Tersoftf [40] gives
the highest relaxation times for low-frequency acoustic phonons. For 20 x 20 primitive
unit cell SLG system, they found the TC close to 2500 W/mK from the SED method and
1192 W/mK from the Green-Kubo method. Very recently, Han and Ruan [54] showed
that four-phonon scattering plays a dominant role in SLG thermal transport, leading to
a finite thermal conductivity (~ 1300 W/mK) at 10 um system size, which is lower than

diamond, contrary to previous predictions of TC divergence.

Some experimental and computational works have also been done on the sus-
pended AB-stacked bilayer graphene (AB-BLG) and A A-stacked twisted bilayer graphene
(tBLG). The twisting of graphene layers when placed over each other leads to Moiré
pattern, as shown in Fig. 2.1. Pettes et al. [56] measured the TC of turbostratic bi-
layer graphene with a rotation of 11.7° between two graphene layers using the elec-
trical self-heating method and a value of around 600 W/mK was revealed at the room
temperature. Using an opto-thermal Raman technique, Hongyang Li et al. [57] esti-
mated the TCs of AB-BLG and tBLG with a twist angle of 32.2° and found them to be
1896 + 410 W/mK at 314 K and 1413 + 390 W/mK at 323 K, respectively. The authors
attributed the reduction in the TC of tBLG to the modification in the phonon disper-
sion curves and the emergence of numerous folded acoustic phonon branches which
led to additional mini-Umklapp scattering channels for phonons. Later, using similar
technique, Han et al. [58] quantified the TCs of AB-BLG as 2071 £ 149 W/mK and TCs
of tBLGs with 2°, 11°, 27° and 30° as 1753 & 126, 1666 + 149, 1817 + 178 and 1929 + 212,

respectively, near room temperature conditions. Using a linearized BTE and perturba-
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Figure 2.1: Overlaying two honeycomb lattices of single layer graphene and creating a
relative twist between them results in twisted bilayer graphene (tBLG) which is also
known as the Moiré pattern [55].

tion theory, Lindsay et al. [59] used optimzed Tersoff potential [40] for the intralayer
and the Lennard-Jones (L]) potential for the interlayer C-C atoms and calculated the
TCs of AA-stacked 5 um length SLG and BLG samples close to 2600 and 2200 W/mK at
300 K. In all the works cited below, the interlayer C-C atoms have been modeled using
the L] potential, however, with different L] parameters. With a similar methodology
but changed L] parameters and full iterative solution of the BTE, Singh et al. [60] re-
ported the TCs of SLG and BLG samples close to 3200 and 2200 W/mK, respectively at
300 K. In the NEMD setting, Wei et al. [61 ] used Tersoff potential [62] for the intralayer
atoms and the L] for the interlayer atoms, imposed a constant heat flux between hot and
cold regions by scaling the velocities of the atoms, and obtained the bulk TC for AA-
stacked SLG and BLG as 870 W/mK and 820 W/mK, respectively, at room temperature.
In another NEMD work, Chenyang Li et al. [63] used the REBO [64] potential for the
in-plane atoms and then they employed the Muller-Plathe algorithm for the calculation
of heat flux and finally reported the bulk TCs of AB-BLG around 1050 W/mK and those
of tBLGs with twist angles of 21.8°, 32.2° and 13.2° as around 800, 640 and 560 W/mK,

15



respectively, at 300 K. They also obtained phonon dispersion curves with the help of Fix-
Phonon package of the LAMMPS code [65] and found that the phonon velocities and
energies are not changed by misorientation angles in tBLG. Instead, they attributed the
reduction in phonon lifetimes and the consequent increase in the Umklapp scattering
as the dominant reason behind the reduction in the TCs of tBLGs. This was backed up
by density functional theory (DFT) based calculations of phonon lifetimes of AB-BLG
and tBLG with twist angle of 21.78°. Nie et al. [66] used optimized Tersoff [40] for the
intra-layer interactions and performed NEMD simulations over 22 x 10 nm?* samples
of BLGs, 4-layer and 6-layer graphenes with different twist angles where temperatures
of hot and cold regions were controlled by the Langevin thermostats. Their reported
values of the TCs for the tBLGs with twist angles between 1 and 30 degrees are in the
range of approximately 320 to 450 W/mK at 300 K temperature. The corresponding
quantum corrected [46] values are in the range of 270 to 370 W/mK. Liu et al. [67] also
performed NEMD simulations by setting the temperature of hot and cold regions with
the Langevin thermostats over 20 x 10 nm? tBLG samples using the optimized Tersoff
potential for the intralayer interactions, and obtained the TCs along the length axis in
the range of 361 to 473 W/mK when the twisting angle changes from 0° to 30°. The heat
flux was calculated by the TWD method [47]. They also reported anisotropy in TCs
for these samples which tend to decrease as the twisting angle increases, calculated
the phonon lifetimes by fitting the SED curves to the Lorentzian function for different
branches of phonon dispersion for the same samples and calculated the bulk TCs as

699.44 and 401.61 W/mK corresponding to the twist angle 0° and 21.78°, respectively.

The TC of bilayer graphene has received significantly less attention than that of
single layer graphene, despite its promising applications in thermal management. Pre-
vious studies have reported a wide range of TC values without fully addressing the
unique properties of bilayer structures. This gap in research highlights the need for fur-
ther investigation into the thermal transport mechanisms specific to bilayer graphene,
as understanding these factors could lead to improved performance in practical appli-
cations. Exploring the TC of bilayer graphene will provide valuable insights into its

potential uses in advanced materials.
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2.2 Grain Boundary in Single Layer Graphene

One crucial aspect often overlooked is the influence of grain boundaries (GBs) on the
TC of polycrystalline graphene (PC-G) with some notable exceptions. Experimentally,
ithas been found that the TC of PC-G increases with increase in grain size. Ma etal. [68]
reported that the TC exponentially increased from almost 610 to 5230 W/mK at the
room temperature as the grain size increased from almost 200 nm to 10 ym. Similarly,
Woomin Lee et al. [69] found the in-plane TC in the temperature range from 320 K to
510 K to be 680-340, 1890-1020 and 2660-1230 W/mK for average grain sizes of 0.5, 2.2,
and 4.1 pm, respectively. Dongmok Lee et al. [70] measured significantly smaller TCs
(412-572 W/mK) for PC-G samples with reduced grain sizes of less than 1 ym. They
also showed almost no dependence on misorienation (tilt) angles of GBs for the TCs
of PC-G samples whereas there was strong dependence on misorienation angles for

bicrystalline graphene (BC-G) samples.

Numerically, one of the earliest studies to investigate the GB effect on the TCs of
PC-G samples was done by Bagri et al. [71], who performed reverse non-equilibrium
molecular dynamics simulations with modified Tersoff interatomic potential on tilt GBs
based graphene samples with misorientation angles 5.5°, 13.2° and 21.7°, and estimated
the bulk TCs to be around 2220, 2380 and 2380 W/mK, respectively, thereby showing
a very week dependence on the misorientation angles. They also calculated boundary
conductance (inverse of Kapitza resistance) which decreased with increase in misorien-
tation angles. Following non-equilibrium Green’s function approach, Serov et al. [33]
showed strong increasing dependence of the TCs of PC-G samples on grain sizes rang-
ing from close to 1 nm to 1000 nm at room temperature, for which the TCs vary from
close to 100 W/mK to 550 W/mK. However, the dependence on the misorientation an-
gle was found to be negligible. In another study, using REBO potential for interatomic
potential and Green-Kubo method for the calculation of the TC, Mortazavi et al. [72]
prepared PC-G samples with average grain size from 1 nm to 5 nm and found the TCs
of PC-G samples to be one order of magnitude smaller than that of pristine graphene.
With the same REBO potential and approach-to-equilibrium molecular dynamics sim-

ulations, Hahn et al. [73] estimated the bulk TC of PC-G with an average grain size
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of 1 nm as 26.6 W/mK at 300 K, which was almost 3% of the crystalline sample. The
presence of GBs significantly decreased the estimated mean free path from 451 nm for
crystalline graphene to around 30 nm for PC-G, which suggested increased scattering
of phonons with GBs. With the help of Green-Kubo method and optimized Tersoff po-
tential, Liu et al. [74] showed that the TC decreases exponentially with increasing GB
energy for PC-G samples.

With the help of the non-equilibrium molecular dynamics (NEMD) method [48],
another set of computational works [75, 76, 77| on BC-G samples show strong depen-
dence of the tilt angle and average density defects along GB on the Kapitza resistance.
In a detailed comprehensive NEMD based study, Fox et al. [78] performed simulations
on bicrystalline graphene nanoribbons (bi-GNR) ' for a wide range of tilt angles (f)
under arbitrary in-plane thermal loading directions (¢). They showed that the TCs de-
crease from 0° to 32.2° tilt angles and then increase almost symmetrically up to 60° tilt
angles. Having done the size-dependent analysis for ¢ = 10°, they calculated the bulk
TCs for # = 9.4°,32.2°,44.8° and found them to be close to 416, 312 and 476 W/m K,
respectively. This dependence on misorientation angles is similar to the experimental
work done by Dongmok Lee et al. [70] for BC-G samples. Using similar NEMD method,
another study found that 10.98° BC-G displays anomalous higher TC compared to other
misorientation angles [79], which was not observed by Fox et al. [78]. In both works, it
has been established that the TC is inversely proportional to the dislocation density of
GB. In a recent NEMD based work done by Tong et al. [80], where the heat flux was cal-
culated with the incorrect thermostat work done method [81], which overestimates the
TC value in comparison to that obtained by a more consistent Irving-Kirkwood based
calculation of heat flux, the TCs of BC-G samples were found to first decrease with
the tile angle from 0° to 13.18°, but then contrary to Fox et al. [78] was shown to have

increased for 21.78° tilt angle.

These works mostly focus upon the calculation of the TCs of PC-G or BC-G samples
using Green-Kubo or NEMD approaches [48, 49] and show that the TCs increase with
increasing grain size. The TC of BC-G depends upon the misorientation angle [70, 79,

78,741, however, the dependence has been found to be weak for PC-G samples [71, 33].

! Although they write polycrystalline but their simulation details suggest bi-GNR samples because

periodicity along x-axis is not present.
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The NEMD based works also explore the effect of GBs and misorientation angles on
the Kapitza conductance and some studies have also been able to capture the depen-
dence on GB energy and dislocation density, however, none of these works investigate
the microstructural properties of the TC of PC-G samples such as phonon mean life-
times and group velocities of different phonon modes in detail. We found only one
study done by Tong et al. [80] which discusses the contribution of phonon lifetimes
and group velocities, obtained from the Spectral Energy Density (SED) method and
the lattice dynamics, respectively, for the GBs with three different misorientation an-
gles, 0 = 4.41°,13.18°,21.78°, however, the treatment and the discussion remain brief.
Moreover, the sample preparation does not seem to have followed proper procedures
to maintain stable dislocation core structure [82]. The study also adopts the alternative
phonon SED &' [83] approach for the extraction of spectral phonon relaxation times
which does not involve eigenvectors and, therefore, does not represent the phonon
spectral energy [83] accurately. Further, the calculation of phonon lifetimes and group
velocities has been performed for polycrystalline samples because the SED method as-
sumes periodicity along all three coordinate axes, however, they have been cited as

supporting evidences for the TCs of BC-G samples obtained by the NEMD method.

As grain boundaries can significantly influence phonon scattering and thermal
transport, yet existing literature often neglects the specific effects of different grain
boundary angles. Research on graphene with grain boundaries (GB) at various angles
offers a promising area for further investigation, as there are few studies examining
how these orientations affect TC. Exploring this relationship could provide valuable
insights into the mechanisms behind changes in TC, emphasizing the need for dedi-
cated research to understand the impact of grain boundary interactions on graphene’s

thermal properties.

2.3 Single Layer Graphene with Strain and Ripple

The impact of strain on the TC of bulk materials has been extensively studied over
the years of which few are mentioned here [84, 85, 86, 87, 88]. In conventional three-

dimensional materials, compressive strain typically increases TC by stiffening phonon

19



et R o
AR R
MRS

34
A

N

Figure 2.2: Graphene in various structural forms: (a) rippled graphene, (b) wrinkled

graphene, and (c) crumpled graphene. [93].

modes, while tensile strain decreases it by softening these modes [86, 87, 89, 90]. This
relationship follows a power-law dependence as described by the Peierls-Boltzmann
framework [86]. However, this rule does not hold for low-dimensional materials, par-
ticularly one-dimensional structures like carbon nanotubes (CNTs). Under compres-
sive strain, localized buckling structures form, increasing phonon scattering and signif-

icantly reducing TC [91, 90].

By default, the 2D single layer graphene sheet has corrugations [92]. From liter-
ature [93], out-of-plane displacements have been categorized as wrinkles, ripples and
crumples based on their aspect ratio, physical dimensions, topology and order, as fol-
lows: wrinkles and ripples occur nominally on two-dimensional plane, where wrinkles
have a high aspect ratio with width between one and tens of nm, height below 15 nm,
and length above 100 nm (aspect ratio > 10); and ripples are more isotropic (aspect ratio
= 1) valleys and peaks with feature size below 10 nm Fig. 2.2 [94]. On the other hand,
crumples are dense deformations (folds and wrinkles) occurring isotropically (ordered

or unordered) in two or three dimensions (similar to crumpled paper) [95, 96]. Other
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experiments have also revealed that suspended graphene membranes commonly form

spontaneous ripples [97, 92, 98, 99].

Since graphene has a two-dimensional structure, its strain response differs from
three-dimensional bulk materials and one-dimensional CNTs because strain-induced
stress can partially dissipate perpendicular to the sheet. Especially in the presence of
intrinsic ripples in graphene [100], the effect of strain makes the case all the more inter-
esting where earlier studies have failed in order to decouple the strain and the ripple in

effect while studying the TC of graphene.

Experimentally, the effect of bi-axial strain has been studied by Nakagawa et. al.
[101] where they showed that with small strain the TC of graphene decreased signifi-
cantly. Another study done by Kuang et. al. [102] reported size dependency and strain
effect on the TC of SLG. Another study done by Kuang et. al. [102] reported size depen-
dency and strain effect on the TC of SLG. Guo et. al. [103] in their work on suspended
graphene with strain have shown that the TC decreases as the strain increases owing
to the fact that the applied strain softens the higher frequency phonons and also re-
duces the phonon group velocities. Another recent experimental study done by Wang
and Zhang [104] have shown similar decrease in the TC with increasing uniaxial strain

using opto-thermal Raman technique to characterize the thermal transport properties.

Theoretically, in 2009, Bao et al. [105] were the first to explore the modulation of
ripples in graphene through its negative thermal expansion. Li et al. [91] observed a
decrease in TC in single layer graphene (SLG) under strain, attributing it to changes in
the dispersion curve, as seen in Fig. Fig. 2.3, where the frequency shifts with increasing
strain. Wei et al. [106] 2011 published their research in which they studied the strain
effects on the TC of GNRs with different edges (ZGNR, AGNR) based on the reverse
non-equilibrium molecular dynamics (RNEMD) method. They found that Under ten-
sile strain, TC is reduced by softening the phonon modes, while under compressive
strain the phonon modes are almost constant. In another study, it was observed that
under a compressive strain, as the size of the graphene sheet increases, the wavelength
and amplitude of the ripples increase as well [107]. In 2012, Baimova et al. [108] used
molecular simulations to control these ripples by applying in-plane strain. Dmitriev et

al. [109] further showed that the simultaneous application of shear and tensile forces
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Figure 2.3: Phonon dispersion curves for: a) bulk silicon and b) bulk diamond under

varying strain conditions [91].
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can produce ripples with adjustable size and orientation. In 2013, Zhang et al. [110]
found through molecular simulations that applying strain transforms the ripples in
graphene into structural ridges, resulting in a 20% to 30% reduction in TC. Similarly, in
2015, Lee et al. [111] observed a decrease in TC, alongside an increase in ripples, when
studying silicon-doped graphene using molecular dynamics. In 2016, Hahn et al. [112]
used NEMD simulations to show that higher out-of-plane corrugation in graphene also
leads to reduced TC. Continuing this line of research, Park et al. [113] in 2017 intro-
duced a technique using molecular dynamics simulations to develop uniformly dis-
tributed ripples with different heights through strain engineering. They found that as
the ripple height increased, the TC decreased.

Thus, previous studies have offered insights into the effects of strain and ripple
on the TC of single layer graphene (SLG), but they often lack a quantitative analysis
of these interactions. Many investigations focused on qualitative observations without
systematically evaluating how strain influences phonon dispersion and group velocity.
Additionally, while some explored the ripple effect, they did not adequately quantify
its impact on TC, particularly concerning out-of-plane fluctuations. The studies so far
have found that strain-induced increase in ripples reduces the TC of the flat graphene
sheet, however, the MD-based calculations have shown only the combined effects of
both strains and ripples on the TC. There have not been any attempts to decouple the
effect of strains and ripples on the TC of graphene sheets. In the present work, we
attempt to fill this gap by distinguishing the individual effects of strains and ripples
using equilibrium MD simulations with GK and SED methods.

2.4 2D FPU-{ Lattices

The FPU problem is about how energy spreads between different vibrational modes
in a weakly non-linear system, starting from an initial state far from statistical equilib-
rium. Despite 70 years of study and advances in both theory and computing, the main
question remains: how is this problem related to classical statistical physics? From the
first numerical experiment performed by Fermi, Pasta, Ulam, and Tsingou in order to

observe the energy sharing in one-dimensional lattices with non-linear coupling among
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rigid masses, there have been an immense number of studies related to the 1D chain
study of its thermal properties. This eventually led to the study of 2D systems. The
earliest studies to understand heat transport in the 2D system were done in [114, 115].
These authors examined the combined effects of non-linearity and disorder on heat
conduction in two-dimensional harmonic and anharmonic lattices using Lennard-Jones
pair potentials. Their research also focused on analyzing how TC varies with tempera-
ture and impurity concentration, which serves as a measure of disorder. They observed
an increase in conductivity in disordered non-linear systems compared to the harmonic
case. Later, Mountain and MacDonald [116] conducted a more detailed study on the
temperature dependence of TC. They examined a two-dimensional triangular lattice
composed of unit-mass atoms interacting through a Lennard-Jones 6/12 potential. Un-
like earlier studies, no disorder was introduced, and their numerical results aligned
with the expected classical law, showing TC proportional to T~'. However, the depen-
dence on system size was not explored in their research [116]. The interplay between
disorder and anharmonicity, initially explored by Payton, Rich, and Visscher, was revis-
ited by Poetzsch and Béttger [117, 118], who studied percolating and compositionally
disordered 2D systems. They focused on identifying the contributions of third- and
fourth-order anharmonicity, concluding that, at the same temperature, the latter re-
sults in a higher TC than the former. Additionally, the authors investigated the system
size dependence of conductivity. While they adopted the same perspective as Michal-
ski [119], a closer analysis of Fig. 2.4 in [117] suggests that their data also support a

systematic increase in TC with system size.

During the early 2000s, the divergence of the heat conductivity in the thermody-
namic limit was investigated in 2D-lattice models of anharmonic solids with nearest-
neighbour interaction from single-well potentials [120]. They studied the size effect
and the asymptotic behavior of the TC in 2D square FPU lattice. For a large  (where
d = Ny/N,; N, and N, are the number of units cells in the x and y direction respec-
tively), the simulation results show that ¢ has a logarithmic divergence for the 2D lat-
tices. It shows that the dimensional crossover happens in §* — 0 for N, — oo [121].
Studies related to defects have [122] found that the missing bond defects give rise to
finite TC due to a thermal gradient formation. Otherwise, the TC is infinite in the 2D

generic disordered harmonic lattice. There are some inconsistent results, indicating that
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Figure 2.4: The reciprocal heat conductivity as a function of the reciprocal sample
length (Error bars according to statistical fluctuations for the extrapolated values).
The temperatures of the heat baths 7} and 75 are held constant at 0.0024a,/kp and
0.0071ay/kp, respectively, where a, is the constant of the second order in L] potential.
The constant width is 40 layers. In a percolation system, the sites (bonds) on a lat-
tice are randomly chosen with probability p = 0.85. Pairs of ( f3, f1) are represented as
%,(0,3);0,(1,1); 0,(0,8); A, (4,8) where f; and f, are numerical factors introduced for
studying the dependence of heat conduction on the strength of anharmonicity in the

Lennard-Jones potential [117].
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an in-depth study of the 2D cases has not been done. For example, [123] shows that for
strong chaotic regime, k(N)~ In(N) and the weak chaotic regime follows a power law,
k~ N* where a ~ 0.77 using NEMD method with FPU-3 potential [120]. In another
study, the weak chaotic regime shows the power law behavior, but the ambiguity lies in
the o ~ 0.22 value. The argument given is that as one keeps on increasing the size of the
system, the weak chaotic regime’s power law tends towards the logarithmic law [124].
Although they perform the simulation for larger system size, the criticism of [124] lies
in the fact that the temperature chosen is in the strong chaotic range, and their argu-
ment for such « values is not backed by any of the current theoretical support. Another
study showing the size effect in the 2D case is done in [121] using NEMD method with
FPU-3. It is shown that the TC nature will change from logarithmic nature in 2D case
to power law in 1D case as 6* — 0 where 6 = N,;/N,, (as the strip gets thinner and thin-
ner, 2D tend towards 1D). Another study on 2D lattices using Toda lattice disregards
the study of Umklapp processes while calculating TC, a phenomenon far from ther-
mal equilibrium, in lattices [125]. Analysis performed with mass-disordered harmonic
solids using NEMD method gave o ~ 0.59 — 0.59 with two different types of stochastic
baths [126].

The most recent studies done in the field of getting the associated thermal proper-
ties of 1D systems were done using Lorentzian fitting of Spectral Energy Density and
getting mean free path, phonon lifetime, etc., using FPU-/ potential [127]. The phonon

lifetimes followed 7 ~ k=7 for small « at different temperatures. This study showed

1

the divergent power law behaviour & ~ N“. The relation of cvand y givenby a = 1 — =

[128,129] shows that a comes out to be ~ 0.41 and which agrees with previous studies.
Similar study has been extended in order to study diatomic [130, 131], defect [132] and
interfacial [133, 134] systems. Thus, apart from [127], there has been no study for the
2D system related to the phonon dynamics and their properties. Hence, for the first
time, we have studied the phonon properties of the 2D FPU-/3 based potential system

in order to investigate its thermal properties.
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Chapter 3

Methodology

In this chapter, we present a detailed methodology for calculating the thermal
conductivity (TC) of 2D systems, outlining the three primary approaches used in this
study. We begin with the direct method, which employs non-equilibrium molecular
dynamics (NEMD) simulations. It is then followed by two equilibrium molecular dy-
namics (EMD) methods, which include the spectral energy density (SED) based nor-
mal mode decomposition (NMD) method and the Green-Kubo (GK) method. Each
method is explained in the order in which it was applied during the study of different
types of systems, providing a comprehensive understanding of their implementation

and relevance to 2D thermal transport studies.

3.1 Non-equilibrium Molecular Dynamics

The NEMD “direct method” is a standard approach based on steady state heat conduc-

tion governed by Fourier’s law which linearly relates the steady-state heat flux vector
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Figure 3.1: Schematic diagram of a nanoribbon partitioned into bins with free BCs.

Shaded regions are thermostatted.

q(x) at position « in the current configuration and the temperature gradient V6 as

q(x) = —kVo(x), (3.1)

where 0(x) is the temperature at position . Further, k is the TC tensor of the system,

which can be represented by a diagonal matrix

ke 00
k=10 ky O
0 0 ke

for our studied systems. We model these systems as nanoribbons and divide them into
Npins bins of equal size as shown for example in Fig. 3.1 for Ny, = 11. The heights
of the SLG and BLG nanoribbons were taken as 3.34 A and 6.68 A, respectively. The
center of mass of each bin serves as a macroscopic probe position x. A temperature gra-
dient is established only along x-axis by thermostatting the left and right ends of the
nanoribbons at two different temperatures ; and 0, respectively, with free boundary
conditions (BCs) in all directions. Thus, we impose the following BCs for the nanorib-

bons:

0 ($ = O,t) = QL, 0 (CB = L, t) = QR, (32)

where z = 0 and z = L correspond to the « coordinates of the center-of- mass of the first

and the last bin, respectively. For this set-up, the corresponding steady-state behavior
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is governed by 1D form of the Fourier’s law in Eq. (3.1):

4@ = 12 @) (33)

ox
where ¢ is the only available heat flux along z-axis and k,, = k is the xz-component of

the TC tensor k.

In MD, we obtain time-dependent positions and momenta of all particles in the
system after integrating the equations of motion [135]. As a function of the spatial
average of the kinetic energy of all atoms in a given bin, the instantaneous temperature

of bin n becomes [48]

inst __ 2’C
" 3N,kg’

(3.4)

where K is kinetic energy (with rigid-motion removed [136]) of all V,, atoms in bin n
and kg is Boltzmann's constant. For the calculation of the heat flux q, we consider a
system of N atoms with mass of " atom as m;, position as r;, distance between atoms
iand j as r;; = ||r; — r;||, and v; as the velocity of atom i relative to the center-of-mass
velocity of the system. The heat current J for systems with pair potential interactions

is [41, 48]:

N N o
- v; + v
J:ZBZ-’UZ'—FZ |:.fzg 5 ]] (r; —1;). (3.5)
i=1 irj
i<j

Here, e; represents the local site energy of atom ¢ which includes both kinetic and poten-
tial energy terms and f;; is the force on atom i because of atom j [48]. This definition,
known as obtained through Irving-Kirkwood (I-K) procedure [41], can further be ex-
tended to interatomic potentials with three-body terms [41, 137]. The z-component of
the heat current in Eq. (3.5), J,, with N = N,, atoms for bin n provides the expression
for the instantaneous heat flux at center-of-mass of bin n as ¢™* = J,/V,,, where V,, is

the volume of bin n. The steady-state value of any thermodynamic property A, such as

temperature and heat flux, is its phase average, which following ergodic hypothesis [ 135]
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is obtained by performing a long-run time average in an MD simulation:
. 1 fhs
A, = (AP = t_/ ARt (T) dr, (3.6)
ss JO

where the subscript n refers to the bin n and ¢ is a long time at which steady-state has
been assumed to be achieved. Calculating temperature and heat flux along z-axis for
each bin gives us corresponding temperature and heat flux profiles. The temperature
gradient is calculated by fitting straight lines to the steady-state temperature profiles in
the regions considerable away from the thermostats. We exclude the two nearest bins
to both left and right thermostatted bins for the linear fitting. This gives us the TC, &,
in Eq. (3.3) as

k= {(q) (g)_17 (3.7)

where Af/Az is the linearly-fitted temperature gradient and (g) is the average of the
z-component of the heat flux vector of all bins included in the fitting. The obtained
k is both length and width dependent. We first obtain a converged value of k by in-
creasing the width and then we keep increasing the length of the nanoribbon so that

an extrapolated bulk TC can be obtained.

3.2 Normal Mode Decomposition

The TC tensor of a system can also be calculated using phonon properties such as group
velocities and phonon relaxation times in an expression derived from the Fourier’s law
in Eq. (3.1) and the phonon BTE under the relaxation time approximation (RTA) [138,
83]:

k=2 > () vy(5) @, (5) (%), (38)

where the summation is over all phonon modes, also known as normal modes, in the

first Brillouin zone (BZ), denoted by wavevector  and dispersion branch v. Also, ¢,(¥),
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v,(®) and 7(¥) are the mode specific volumetric specific heat, group velocity and relax-
ation time or phonon lifetime, respectively. The symbol ® represents the dyadic prod-

uct of two vectors which turns the TC k into a tensor. The group velocity comes from

K
the dispersion curve’s gradient, i.e. v,(¥) = 2 a(n ), which can be obtained by defining

a fine grid of wavevectors around the given mode (¥) and then using finite difference
method over this grid. The frequency w(¥) is obtained by harmonic lattice dynamics
calculation [139, 83] based GULP package [140]. In the quantum sense, ¢, (%) in terms

of Planck’s constant %, Boltzmann’s constant kg and temperature 6 is given by

ot (BN exp () fhed)
= () foxp (%) k) — 1 (39)

where V is the volume of the simulation domain.

The NMD utilises the basic concept of projecting the atomic trajectories coming
from an equilibrium MD simulation onto the normal mode coordinates of the system
using Fourier transformation technique. Briefly, the phonon lifetimes can be obtained

as follows. The time derivative of the normal mode coordinate, Q(’j’, t), is given by

\/>ua L Dyexp ik -ro ()], (3.10)
abl

where n and N are number of atoms in a unit cell and total number of unit cells, respec-
tively. And, e*(*?) represents the time-independent eigenvectors of normal modes, m;,
is the mass of the " atom residing inside the " unit cell while r4(/,0) is the equilib-
rium position vector of the I unit cell and 1, (};t) is the a-component of velocity of

this b™" atom at time ¢, where integer « index varies from 1 to 3.

Once the set of atomic velocities from the MD simulation and phonon mode eigen-
vectors e* (¥ ?) for different allowed wave vectors [83], calculated with the help of GULP [140],

are obtained, the phonon SED for a given mode is derived as [141]

2

\/ﬁ/ Q (%: t)exp(—iwt) dt| . (3.11)

With the help of the anharmonic LD theory and the Wiener-Khinchin theorem [141, 83],

K. — .
®(V’W) T(l)lE)IIOO 7—0
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it can further be shown that the phonon SED for a given mode is

d(k:w) = o [w[wo(’,?)r’ (3.12)

%)

where I is intensity of the Lorentzian peak whose center lies at wy (%) with its line width
I'(®) equal to 1/27(¥). Now, ®(¥;w) is calculated with the help of Eq. (3.11) and the
data as a function of w is fit to the Lorentzian function in Eq. (3.12) to extract wy () and
7(K). It should be noted that the lifetimes obtained by this SED technique contains both

the normal and the Umklapp scattering processes.

3.3 Green-Kubo

The Green-Kubo technique, based on linear response theory and the fluctuation-dissipation
theorem, uses time autocorrelation functions (ACF) to characterize the system’s behav-
ior. In equilibrium molecular dynamics (EMD), dynamic properties such as thermal
conductivity are calculated using these principles, where the heat flow in an equilib-
rium system fluctuates around zero. Heat flux vectors and their correlations are com-
puted throughout the simulations, and the time required for the Heat Auto-Correlation
Functions (HACF) to decay to zero is used through the Green—Kubo relation to predict
the thermal conductivity. Statistical thermodynamics coupled with extensive algebra,

resulting in the following equation for thermal conductivity [142]:

1
ks = li
b e kgVT?

/ N10.00) @ Jo(6))dt, (3.13)

where kg is the Boltzmann constant, V and T are the system volume and tempera-
ture, respectively, 7;(= IAtyp) is the integration timestep, Aty p is the time step in
the molecular dynamics simulation and [ is the total integration steps. J, is the o com-

ponent of the lattice heat current vector J which is defined as
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J(t) = %ZRZEZ- = ZEV +ZR¢%, (3.14)

where, R;, v;, and E; represent the position vector, velocity, and the total energy
(including both potential and kinetic) of atom i. The first term on the right-hand side of
Eq. (3.14) accounts for atomic diffusion, commonly referred to as the convection term.
The second term represents the correlation of energy transfer between neighbouring

atoms [143]. The (J,(0) ® J,(t)) is the ensemble averaged HCACF.

In MD , time is discrete, so the integral becomes a sum over discrete time steps,
and the HCACF is computed numerically. The Eq. (3.15) reflects this discretization
and adds a statistical averaging approach to improve accuracy where averaging over
multiple time origins (starting points for the autocorrelation function) helps reduce

noise in the computed thermal conductivity.

. Atyp : 1
k= S,IIITOO VkBT2 Z S—a Z Ja—l—b @ Jb (315)
S>1 a=1 b=1

Eq. (3.15) is a discrete form of the GK relation for calculating thermal conductivity (k)
from molecular dynamics (MD) simulations where, J,;, and J; are heat current vectors
at time steps a+b and b, respectively. When S > I, it ensures enough independent data
points from the long-time series to average over, improving the statistical reliability of
the results. The inner sum with a factor ¢ represents the ensemble average and the

outer sum represents the integration in time.

The following table gives a brief description and comparison of the above men-

tioned MD-based techniques.
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Criteria NEMD NMD GK
Type of Method Non-equilibrium, Di- | Equilibrium, Normal | Equilibrium, Auto-
rect Method Mode Analysis correlation Function
Boundary = Condi- | Requires thermal | Periodic  boundary | Periodic  boundary
tions gradient, temper- | conditions conditions
ature boundary
conditions
System Size Depen- | Thermal conduc- | System-size inde- | Size-dependent and

dence tivity is length and | pendent in terms of | requires long sim-
width dependent calculated phonon | ulation times for
properties convergence
Key Output One component of k | Phonon lifetimes, | Full k tensor
tensor group velocities and
full k tensor
Accuracy Can be affected by | High accuracy due | High, but requires
system size and non- | to detailed phonon | accurate correla-
linear  temperature | mode analysis tion decay and long
gradients timescales
Method Limitation | May not capture all | Limited temperature | Limited by noise in

scattering processes,

e.g.,, Umklapp scat-

range as it assumes

harmonic lattice dy-

the autocorrelation

function, long times

tering namics required for accurate
decay
Time Scale Require- | Requires steady-state | Long simulations | Long simulation time

ment conditions to be | required for accurate | required for decay of
achieved, moderate | phonon mode de- | autocorrelation func-
timescale composition tions

Physical Insights Provides a straight- | Offers insights into | Directly links equilib-

forward interpre-
tation of heat con-
duction following

Fourier’s law

mode-specific  heat
transport mecha-
nisms

rium fluctuations to
macroscopic thermal

properties

Table 3.1: Comparison summary of NEMD, NMD, and GK methods for TC Calculation
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Chapter 4

A Consistent Comparison of Lattice
Thermal Conductivities and Phonon
Properties of Single Layer and Bilayer
Graphene Systems

In the present chapter, we study the size-dependent thermal transport in sus-
pended SLG, AB-BLG and tBLG with a twist angle of 21.78° samples with the help
of robust and consistent NEMD [48, 49] simulations based direct method and normal
mode decomposition (NMD) analysis based SED method [144, 145, 146, 83]. Our work
partially overlaps with the work done by Chen and Kumar [50], Qiu and Ruan [51, 52],
Park et al. [47] and Zou et al. [53] for the SLG samples and Chenyang Li [63], Nie et
al. [66] and Liu et al. [67] for the BLG samples, however, there are significant differ-
ences. Chen and Kumar [50] neglect the anisotropy in the phonon dispersion in the
full Brillouin zone (BZ) in their relaxation time approximation approach whereas we

sample all the available normal modes in the BZ without neglecting the anisotropy.
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On the other hand, Qiu and Ruan [51, 52] and Zou et al. [53] adopt the alternative
phonon SED &' [147] approach for the extraction of spectral phonon relaxation times
which does not involve eigenvectors and, therefore, does not represent the phonon spec-
tral energy [147] and leads to more scattering in the relaxation time calculation. We
perform lattice dynamics (LD) calculations with the help of the GULP [140] package,
calculate eigenvector for each phonon mode and extract the phonon relaxation times
from the LD theory based SED ¢ approach [147]. With regard to direct method based
NEMD work, we calculate the heat flux using Irving and Kirkwood’s [41] expression
whose derivation is based upon the mass, momentum and energy balance equations by
means of the Liouville equation based classical statistical mechanics. This is in contrast
to Park et al. [47] and Liu et al. [67], who use the TWD method for calculating the heat
flux in the NEMD direct method setting. With the help of thermodynamic arguments
and our own NEMD simulations, we show that this method does not provide correct
heat flux. Chenyang Li et al. [63] adopt an inconsistent approach in the sense that they
calculated the bulk TCs of AB-BLG and tBLG samples with the NEMD direct method
using classical interatomic potentials, however, the calculation of phonon lifetimes was
achieved with the help of the DFT based ShengBTE package. Nie et al. [66] set up the
temperature gradient using the Langevin thermostats but do not mention the method

for calculating the heat flux in their NEMD direct method setting.

In the earlier Section 3.1 and 3.2 we described the methodology for the NEMD di-
rect method and the SED method. The latter calculates the thermal conductivity in the
BTE framework by adopting the relaxation time approximation approach. The phonon
relaxation times are obtained by fitting the SED curves to the Lorentzian function. In
Section 4.1, we prepare the samples, perform the direct method simulations and other
MD simulations required for the SED analysis over different sizes of suspended SLG,
AB-BLG and 21.78° tBLG systems. In Section 4.2, we discuss the results obtained for
the NEMD and SED methods and also provide a critique of the TWD method used for
the calculation of the heat flux. We also obtain bulk TCs of three graphene systems
using the NEMD direct and SED methods. Finally, we conclude in Section 4.3 with a

summary and suggestions for future work.
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4.1 Sample Preparation

Firstly, in this chapter the two methods (direct and NMD method) have been used to
get the TC for the SLG, AB-BLG and tBLG systems. The direct method (see Section 3.1)
is based on NEMD simulations and the NMD method (see Section 3.2) is based on
both equilibrium MD simulations and lattice dynamics calculations. Like many work-
ers cited in Section 2.2, we also model the intralayer C-C interactions of the suspended
SLG, AB-BLG and 21.78° tBLG systems using the optimized Tersoff [40] potential and
the interlayer C-C interactions using an L] pair potential with L] parameters o = 3.34 A
and ¢ = 2.96 meV [63]. The cutoff radius was taken to be 7.,y = 30 = 10.02 A. Next,
we describe the construction of SLG and BLG samples. The two planar lattice vectors
taken for the formation of the primitive unit cell of the SLG samples are a; = ai and
as = a(cos60°1 + sin 60°)) in A, where i and j are unit vectors along = and y axes, re-
spectively, as shown in Fig. 4.1a, and lattice constant a = 2.492 A . The choice of such
lattice parameter value depends upon the choice of interatomic potential and comes
from the work of Lindsay and Broido [40]. The construction of commensurate tBLG
labelled by (M, N) is achieved by stacking two graphene layers with a twist (misorien-
tation) angle o [148], where M and N are non-negative integers. The upper layer has
the commensurate primitive superunit cell defined by two vectors, c;1 = Na; + Mas
and cy2 = —May + (M + N)a,, followed by an anticlockwise twist rotation with an an-
gle a/2 — 7/6 along z-axis. The lower layer is constructed by the superunitcell vectors
defined by ¢;1 = Ma; + Nay and ¢ = —Na; + (M + N)a,, followed by a clockwise
twist rotation with an angle /247 /6 along z-axis. This makes sure that the twist angle

o becomes

2 L ANM + M?
N” - ANM ) (4.1)

Q. = arccos (2(N2 i NM T M2)

The initial distance between the two layers is kept at 3.34 A. Thus, we obtain a com-

mensurate tBLG unit cell with cell size L.y = av/ N2 + NM + M? such that the top or
the bottom view represents a parallelogram as shown in Figs. 4.1b—4.1c, defined by two

vectors p; = Lceni and py = Leen(cos 60°i + sin 60°j). In this framework, SLG samples
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(b) AB-BLG (c) 21.78° tBLG

Figure 4.1: The primitive unit cells for (a) SLG (b) AB-BLG, and (c) 21.78° tBLG such
that the resultant parallelogram can be defined by two vectors p; = Leeni and P2 =

Lean(cos 60°1 + sin 60°5).
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are (1,0) samples with only the lower layer whose unit cells are defined by p, = i
and p, = a(cos 60°1 + sin 60°j). AB-BLG samples are labeled as (M, N) = (1,0) with
the twist angle o = 0° in AB-stacked sense, whereas 21.78° tBLG samples are labeled
as (M, N) = (2,1) with the twist angle a = 21.78°. The reason for choosing 21.78° as

the twist angle in bilayer graphene system is because the commensurate tBLG unit cell

size given by Lo = av/N? + NM + M? is smallest for this angle where (M, N) = (2,1)
[148]. This gives Lcit = 6.593 A , which has a total of 28 atoms in the commensu-
rate unit cell. Choosing such a unit cell makes the thermal properties investigation
computationally affordable for the spectral energy density (SED) based normal mode
decomposition(NMD) analysis.

The simulations for the SED method have the configurations defined by the primi-
tive unit cells as shown in Figs. 4.1a—4.1c. On the other hand, the NEMD direct method
simulations are done on rectangular nanoribbons such that their lengths, widths and
heights are along z, y and z-axes which coincide with p;, 2p, — p; and k directions,
where k is a unit vector along 2-axis. The temperature gradient and the corresponding
heat flux are developed along the z-axis which in the case of SLG samples coincides

with the zig-zag direction.

The MD package LAMMPS [149] has been used for all our simulations. We have
modified the code such that temperature and heat flux for each bin have been calculated

after removing rigid-body translation as suggested by Jellinek and Li [136, 48].

4,2 Results

4.2.1 NEMD

The left and the right end regions with 1 A width for all SLG, AB-BLG and tBLG sam-
ples are kept fixed. On the remaining innercore region, the binning is done as described
in Section 3.1 and an initialization stage is first performed for all simulations during
which the region is equilibrated to 300 K. Free BCs are applied in all directions and

the MD time step is set as Atyip = 1 fs. The velocities of the atoms are adjusted to
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ensure zero linear and angular momentum of the system. After this, the nanoribbon
is evolved for 80 ps subject to NVT conditions with the temperature set to § = 300 K
using a Nose-Hoover chain thermostat (chain-length = 3) for the first 40 ps and then
using the Langevin thermostat for the next 40 ps. This is enough for bringing the whole
innercore region to equilibrated temperature, which is followed by setting a tempera-
ture gradient across the length of the region by thermostatting the two end bins only
and evolving the rest of the region atoms under NVE conditions for another 40 ps.
Thus, the left (first) and the right (last) end bins are thermostatted at 6;, = 280 K and
Or = 320 K, respectively, with the help of the Langevin dynamics so that the average
temperature of the innercore region remains at 300 K. Once the non-equilibrium steady-
state is achieved with a temperature gradient, the system is run under this condition
for another t,; = 2000 ps, during which the instantaneous temperature and heat flux
are calculated for all bins and averaged over time to obtain the phase averages using

Eq. (3.6), which are then used to calculate the size-dependent TCs in Eq. (3.7).

For a typical example to show the results of the method, we consider an SLG

nanoribbon of size 800 x 500 A2 with N, = 11 and 89412 atoms.

As shown in Fig. 4.2a, the temperature profile is almost linear away from the ther-
mostats (three bins on either ends), barring the Kapitza jump [49] observed near the
thermostatted regions. The average of the heat flux values obtained for these bins,
shown in Fig. 4.2b from bin number 4 to 8, is taken in Eq. (3.7) for the TC calcula-
tion. Having obtained a size-dependent TC of a given sample, we keep increasing the
width so that a width-convergent TC can be obtained. For a constant length of 20 nm
along z-axis, the converged values for widths are 50, 30 and 30 nm, respectively, for
SLG, AB-BLG and 21.78° tBLG samples. Figure 4.3 shows the TCs of SLG, AB-BLG and
21.78° tBLG nanoribbons as the width L, increases. This exercise is followed by keeping
the widths at their converged values and increasing the length of the samples. The TCs

obtained as a function of length have been shown in Fig. 4.4a.

These values are used in extrapolating the TC with the help of the following model:

1_

(4.2)

1 n c
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Figure 4.2: Steady-state (a) temperature, and (b) heat flux profile for an SLG nanorib-
bon of size 800 x 500 A . The nanoribbon is partitioned into Ny;,s = 11 bins and the
first and the eleventh bin are thermostatted. The heat flux has been calculated with the

Irving-Kirkwood (I-K) procedure as described in 3.2.
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Figure 4.3: Width convergence of &k (W/mK) for SLG, AB-BLG and tBLG samples. The

length along z-axis (L,) is 20 nm for all the samples.

where c is a constant and L, is length of the sample. The model suggests fitting a lin-
ear plot between L_lL and ; so that the intercept at the y-axis gives the bulk TC, k.
Fig. 4.4b presents this linear fitting for all three systems. The bulk TCs obtained by this
extrapolation are 1287.2, 582.8, 389.7 W/mK for the SLG, AB-BLG and tBLG samples,
respectively. The bulk TC can also be obtained by the size-dependent TC expression
suggested by Alvarez and Jou [150], who included memory and nonlocal effects within
the framework of extended irreversible thermodynamics in their study of transition of

heat transport from diffusive to ballistic and came up with the following expression:

koo L2 AN

where ko, is the bulk TC and [ is the mean free path of phonons in an average sense.
As shown in Fig. 4.4a, the length-dependent TCs data fit nicely over the expression
in Eq. (4.3), which provides the values of the bulk TCs (k) close to 842.2, 435.5 and
306.8 W/mK and the values of [ close to 172 nm, 134 nm and 112 nm for SLG, AB-BLG
and tBLG samples, respectively. These values are smaller than those reported by Park
et al. [47] for SLG samples, most likely, because of the heat flux and the temperature
gradient calculated with the help of the TWD method which we critique below.
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4.2.2 Thermostat Work Done

In several works such as Park et al. [47], Liu et al. [67] and many others, the rate of
energy added or subtracted to the thermostat per unit area is taken as the heat flux in the
system. We show its incorrectness through thermodynamic arguments and our own
simulations. We consider three regions in a system under the NEMD direct method
setting as discussed above, the first bin (cold thermostatted left region), the last bin
(hot thermostatted right region) and the region comprising bin number n = 2 ton =
Npins — 1, named as the middle region. We use the indices L, R and M to denote these
regions, which are also used as subscripts to define the properties of the regions. If the
rate of change of total energy of any of these regions is &, the rate of heat supplied is
O, and the rate of external work done on the region is W, where i = L, R, M, then the
tirst law of thermodynamics states that E = Q, + W.. In the time average sense, where

P =1 fot Pdt,and P = £, W, Q are different properties, we have

Tt

E=0,+W, i=L,R M. (4.4)

The thermostat (hot or cold infinite reservoir) acts as a surrounding to the thermostat-
ted bins, which supplies heat to or extracts heat from the first and the last bin, respec-
tively, and also does external work on the thermostatted bins. We use the subscript c
and h to describe these thermostats. Moreover, the middle region acts as another sur-
rounding for the left and the right regions and vice versa. This means, using Eq. (4.4),

we have

EL = éc%L + WCHL + éMﬁL + WM%L; (4.5a)
Er=Onon+Wisr + Ousr + Warsg, (4.5b)
Enr = Quomt + Wiswr + Ot + Wi, (4.5¢)

where the subscript a — bhas been used to denote that the heat is being supplied from
the region a to the region b or the work is being done by a on b, wherea,b = L, R, M, c, h.

We are actually interested in calculating the heat flux in the middle region, therefore the
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term of interest in the above system of equations is O1us of Oprsr divided by cross-
sectional area A. The temperature gradient is along x-axis, therefore, all of this heat flux
can be thought of existing only along x-axis, and then we will also have éL_, M= é M—sR-
We use this relation and also the definition that éM_> L= —éL_, M, éM_} R = —éR_> M,

and subtract Eq. (4.5b) from Eq. (4.5a) to obtain

2§M—>R = (éc—)L - 5h—>R> + (WM—@ — WM%R)

+ (WHL - W;HR> - (EL - ER) . (4.6)

It turns out that the last two terms appearing on the right hand side of Eq. (4.6) can be

easily calculated in the following manner.

The equation of motion of atoms in a bin under a Langevin thermostat is described

as
m; = fi + FEP + FF, (4.7)

where m; is the mass of i'" atom in the bin, 7; is the acceleration of the atom whose
position vector is r;, f; is the interatomic force derived from the gradient of the total
interatomic potential energy of the system acting on i atom due to all other atoms
in the system, EP = —ym;r; is the Langevin drag force, v is the damping coefficient,
and F! is the Langevin random force. The drag and random forces are external forces
on the atoms of the bin. Therefore, the rate of external work done by the Langevin
thermostat on the bin is
Nn
W=> (F’+F) v, (4.8)
i=1
where summation is over all the atoms in the bin. The research works utilizing TWD
method depends upon the LAMMPS option “tally yes" in the LAMMPS fix “fix langevin"
to calculate accumulated energy added to the system due to the thermostat. This op-
tion cumulatively adds zﬁ\fl(FiD + F) - v; Aty in each MD time step and prints the

accumulated sum as a fix output. Looking at this expression and comparing it with
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Eq. (4.8), it is clear that it does not calculate accumulated energy fot £dt but it actually
calculates accumulated work done | Ot Wadt, where t is the current time starting from the
time when the LAMMPS fix is invoked with “tally yes". The method, further, incorrectly
assumes that the average rate of the work done by the thermostat per unit area, which
is mistaken as the average rate of accumulated energy added to the bin per unit area, is
the heat flux in the system. In other words, LAMMPS fix “fix langevin" with the option

“tally yes" is used to calculate the average rate of work done, W(t), as

N

— 1 [t . A 1 .
W(t) = 5/0 Wt = TW = ZZWJAtMD, (4.9)
=1

where AW is the accumulated work done, WY is the rate of work done at j** MD time
step, W/ = W(jAtyp), and N, is the total number of MD steps after the “tally yes" option
has been invoked such that ¢ = N;Atyp. This means WH 1, and W;H r appearing in
Eq. (4.6) can be calculated. Also, the change of energy of n'" bin as a function of time
is given by A&, (t) = &,(t) — &, where & is the energy of the bin under equilibrium
NVE ensemble before the application of the thermostat, which involves both potential
and kinetic energies. For our MD simulations, the corresponding average rate of energy
change is

= AE 1

Et)=— =+ ZAEJ (4.10)
where A€ is the accumulated energy change, AE7 is the energy change from equilib-
rium NVE ensemble at ;™ MD time step after the ‘fally yes" option has been invoked.
Thus, EL and ER can also be calculated. Now, if we divide Eq. (4.6) by the cross-
sectional area A, then the average heat flux in the system, (¢) = éM_) r/A, can be calcu-

lated as

(@) = 94 |:<QC~>L éheR) + (WMHL — WM%R)

+ (Wt = Win) = (€2 - €r)]. (4.11)
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This could be another method to calculate the same average heat flux that appeared in
Eq. (3.7). On the contrary, the TWD method defines the average heat flux as

1 1= —
(@) rwp = 24 Weor — W}HR] : (4.12)

Comparing Egs. (4.11) and (4.12), we get

(@) = (Drwp + (). (4.13)

where
(@), = i [(Qr = Qi) + (Wiaror = Wirn) = (E2—En))] (4.14)

is the correction term. With the help of the NEMD direct method simulation described
in Section 4.2.1 over SLG nanoribbons of size 110 x 30 A? (smaller sample) and 800 x
500 A? (bigger sample), we now show that the average heat flux, (¢), calculated using
the I-K procedure as described in Section 3.2 is not equal to (¢)p in Eq. (4.12). In
other words, if (¢) in Eq. (4.11) is the same as the I-K average heat flux in Eq. (3.7), then
(q),in Eq. (4.13) is not equal to zero.

The accumulated energy change, AE, and the accumulated work done by the ther-
mostats, AW, for both the left and the right regions in the SLG nanoribbon of size
800 x 500 A2 have been shown in Fig. 4.5 with time. We obtain similar curves for the
size 110 x 30 A2 These curves help us generate (AE;, — A€x) and (AW, — AWp)

curves with respect to time. When fitted with straight lines, their slopes give us the

values of (W, — W;HR) and (EL — ER), as suggested by Egs. (4.9) and (4.10). Di-
vided by the cross-sectional area A = 30 x 3.34 A2 for the smaller sample and 500 x
3.34 A? for the bigger sample, and again divided by 2, we obtain (¢)yp = —3.736 X
1073, —12.917x 1073 eV/ (Aps), respectively, for smaller and bigger samples. The corre-
sponding values for the heat flux obtained through the I-K procedure are (¢) = —2.845x
1073, -9.501 x 1073 eV / (A2ps), respectively for two sizes, where the average heat flux is

the average of the heat flux values for bin number 4 to 8, as shown in Fig. 4.2a. Since the
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Figure 4.5: (a) For an SLG sample of size 800 x 500 A2, accumulated energy change, AE,
of the left (cold thermostatted at 280 K) and the right (hot thermostatted at 320 K) re-
gions with respect to time have been shown by the red and the blue curves, respectively.
The accumulated work done, AW, on the left and the right regions by the thermostats

have been shown by the green and the black curves, respectively.
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temperature gradient in the linear regime away from the thermostats (e.g. see Fig. 4.2b)
is the same for both the TWD and the I-K calculated heat flux methods, the correspond-
ing TC values are approximately 139 and 106 W/mK for the smaller sample and 843 and
620 W/mK for the bigger sample. This means that the TWD method overestimates the
TC values by around 31% and 36% for the smaller and the bigger samples, respectively,
with respect to the I-K procedure based accurate method. It might be hypothesized
that even bigger system would lead to even greater overestimation and that is why we
believe that when Park et al. [47], calculate the TC of SLG close to 3200 W/mK using the
TWD method, the correct TC value should be actually much smaller. We also obtained
o] (EL - ER> = 1.31 and 29.03 eV/(Aps), for the smaller and the bigger samples, re-
spectively. Using Eq. (4.13), we also calculate the correction term (g), = 0.891 x 10~?
and 3.416 x 1073 eV/(A2ps) for the two sizes.

4.2.3 SED

The primitive superunit cells for all three systems, SLG, AB-BLG and 21.78° tBLG, are
chosen as shown in Fig. 4.1. These unit cells are repeated N, and N, times along the
vectors p; and p,, respectively, as described in Section 4.1 to construct a sample. In
order to obtain the position and velocity vectors of atoms in time for the SED analysis,
tirst an energy minimization is done with periodic boundary conditions along all axes.
This is followed by an equilibrium MD simulation with multiple MD runs where MD
time step was taken as Atyp = 0.5 fs. The first run involves a simulation under NPT
condition with zero pressure and 300 K temperature for 2 x 10° MD steps. The second
run is done under NVT condition with # = 300 K for 2 x 10° MD steps. These runs
are performed with a Nose-Hoover chain thermostat. This is followed by another 22°
MD time steps under NVE condition to ensure that steady-state conditions are achieved
without any corrupting influence of thermostats. The atomic positions and velocities
are collected every 2° time steps. Ten different simulations are performed with different
initial velocities to create replicas of ensemble so that an average of SEDs from these

replicas are finally considered for the extraction of the phonon properties.

Only the allowed wavevectors are used in Eq. (4.15), which for crystalline struc-

49



49 237 2990

-
L.10°
=
S
g
310°
(] /
L
)

10° : ‘ '-

0 20 40 60 80
frequency [THZ]

10° ‘
=
<
c
S
©
=
=)
)
T
%)

10 20 40 60 80

frequency [THZz]
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tures are defined by

n;
=S b, 4.15
=Yooy 415)

where the index i corresponds to ith superunit cell vector (i = 1, 2 for p; and p,, respec-
tively, for our systems), IV;’s are integers representing the number of unit cells along p;
vectors, and n;’s are also integers such that —N;/2 < n; < N;/2 [83]. The vectors b;’s
represent reciprocal lattice vectors, which are used to construct hexagonal BZs for all
three systems studied as shown in Fig. 4.7a. The selection of wavevector is important as
it is found that an inappropriate wavevector will result into wrong resonant peak and
phonon properties [151] as shown in Fig. 4.6. We also follow Qiu and Ruan [51, 52]
to exploit both the symmetry of the BZ and the simplicity in discretization of the BZ,

and choose the allowed wavevectors in the first quadrant of hexagonal BZs, which have
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their symmetric copies in other quadrants. We calculate the SEDs for all these symmet-
ric copies for a chosen wavevector in the 1st quadrant, average them over and then also
average over ten MD simulation runs with different initial velocities before fitting the

SED curves in order to obtain the phonon properties.

We first study N; x N, primitive unit cell samples, where N; = N, = 20, 20, 8§,
respectively, of SLG, AB-BLG and 21.78° tBLG systems, for which the respective number
of atoms per unit cell are 2, 4 and 28. With the help of the harmonic lattice dynamics
based GULP package, we obtain the SLG, AB-BLG and 21.78° tBLG phonon dispersion
curves along the symmetric I'-M direction as shown in Figs. 4.7b—4.7d. They match
with those obtained by Lindsay and Broido [40] for the SLG and Singh et al. [153]
for both SLG and AB-BLG samples. They are also in close agreement with the curves
obtained by Zou et al. [53] and Nika et al. [154] for the SLG system and Chenyang
Li et al. [63] for the AB-BLG and tBLG samples, although both of these works follow
the MD based Green’s function method at 300 K temperature for the calculation of the
dispersion curves. Following Cocemasov et al. [152], we also show the existence of ZA,,
TA; and LA, dispersion branches for the AB-BLG and 21.78° tBLG samples in Figs. 4.7c—
4.7d, whose respective frequencies are very close to ZA;, TA; and LA; modes near the
I'-point. In order to have a sense of the contributions of basic phonon modes towards
the TC, we classify the phonon modes into one of the basic modes (BMs) according to
the energy method [2]', which sorts the BMs according to the energies of the phonons
around the I'-point. There are total 6, 12 and 84 BMs in our SLG, AB-BLG and 21.78°
tBLG systems. Further, SLG has 3 (ZA, TA and LA ) whereas AB-BLG and tBLG systems
have 6 (ZA,, TA;, LA;, ZA,, TA, and LA;) acoustic BMs while the remaining BMs are

optical modes. *

Having obtained satisfactory results for the dispersion curves, we calculate SEDs

in Eq. (3.11) and fit the data over the Lorentzian function in Eq. (3.12). The curve fitting

1 Although Cheng et al. [2] recommend using their new method, named as the projection method, in
which the wavevectors are aligned and then projected onto the eigenvectors of the BMs to determine the
weights of the BMs on the given phonon, we note in Fig. 3 of their work that both the energy method
and the projection method almost give similar results for the contributions of the BMs to the scattering

of electrons in 2D antimony.
2Actually, LAy, TA; and ZA, are optical modes but following Cocemasov et al. [152], we term them

as acoustic modes.

51



(a) Brillouin zones (b) SLG

(c) AB-BLG (d) tBLG

Figure 4.7: (a) Hexagonal Brillouin zones of SLG, AB-BLG and tBLG. The outer (big-
ger) BZ with reciprocal lattice vectors b; and b, corresponds to both SLG and AB-BLG
primitive whereas the inner (smaller) BZ with reciprocal lattice vectors b; and b/, corre-
sponds to the tBLG samples. The red region is the 1st quadrant part of the BZ which is
considered for the discrete allowed wave vectors. Phonon dispersion curves along I'-M
direction of (b) SLG, (c) AB-BLG, and (d) 21.78° tBLG samples. The inset figure in Fig.
4.7c shows the ZA,,TA;,LA,,ZA,, TA, and LA, dispersion branches in increasing order
of the frequency for the modes near the I'-point. These branches with modes having

very close frequencies around the I'-point are also observed in tBLG samples [152].
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Figure 4.8: The Lorentzian function fits for the SED data for the SLG sample having
20 x 20 primitive unit cells. The two dispersion branches TO and LO for the wavevector

K = [—m/4a,0, 0] are being shown for illustrative purposes.

is highly non-linear and done in a semi-automated way such that the fitting parameters
are tuned by visualizing each fit for a given length and width of the system. Once these
parameters are set, they can be used to fit the SED curves of the other samples with
different lengths and widths. Figure 4.8 shows the Lorentzian fits for the phonon modes
with wavevector k = [—7/4a,0,0] and dispersion branches LO and TO as illustrative
examples in the SLG sample with 20 x 20 primitive unit cells. The other phonon modes
show similar fits. As suggested by Eq. (3.12) and following the discussion in Section
3.2, the fitting provides the anharmonic frequency wy(#*) and the phonon lifetime 7 (%)
for the phonon mode (¥). The wy (%) thus obtained matches closely with the harmonic
lattice dynamics based calculation of the frequency for a given wavevector . This is
confirmed by Fig. 4.9 which compares these two frequencies around the I'-point in three
graphene systems studied above. This shows that the harmonic normal modes are good

approximations of the true vibrational modes of the system at 300 K.

The group velocities of these normal modes in the first quadrant of the BZs have

been shown in Fig. 4.10. The average group velocities are 8.39, 8.27 and 6.43 km/s for
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Figure 4.9: Comparison between the harmonic lattice dynamics frequencies (LD Data)
and the SED method fitted anharmonic frequencies (SED Data) around the I'-point for
all the available modes in the SLG, AB-BLG and 21.78° tBLG samples studied above
with N; x N, primitive unit cells, where N, = N, = 20, 20, 8, respectively, for three

systems.
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Figure 4.10: Group velocities in km/s of the normal modes with the allowable wavevec-
tors in the 1st quadrant of the BZs for (a) SLG, (b) AB-BLG and (c) 21.78° tBLG sam-
ples, which are prepared with N; x N, primitive unit cells, where N; = N, = 20, 20,8,

respectively, for three systems. The dashed horizontal lines are showing the average

values.
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the SLG, AB-BLG and tBLG systems, respectively, also shown in Fig. 4.10 with dashed
red horizontal lines. The first two have also same values but they are around 30% higher
when compared with tBLG system. The significant difference in the values of the two
bilayer systems is contrary to the result of Li et al. [63]. We also find an increase in the
number of modes with null group velocity in the tBLG sample, which is another reason

for its lower TC.

The phonon lifetimes obtained for the allowable wavevectors in the first quadrant

of the BZs have been shown in Fig. 4.11. Each point in Figs. 4.11a—4.11c corresponds
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Figure 4.11: Phonon lifetimes in ps obtained for the allowable wavevectors in the 1st

quadrant of the BZ for (a) SLG, (b) AB-BLG and (c) 21.78° tBLG samples studied above.

to a (¥) phonon mode. The maximum 7 for the SLG, AB-BLG and tBLG samples are
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close to 100, 65, 18 ps, respectively, and the average 7 values are 6.9, 3.9 and 3.8 ps.
The latter two have similar values and are almost 43% lower than the value for the SLG
system. It can be observed that several optical modes have lowest values of 7 for each
system. For the SLG and AB-BLG samples, the highest 7’s are available to TA and LA
modes, whereas for the tBLG sample, the highest 7’s are distributed among all modes.

We further discuss the trends in these lifetimes across different BMs below.

With the help of the group velocity and the lifetime of each phonon mode, we
calculate the TC, k, using Eq. (3.8), where k is equal to the average of the diagonal com-
ponents of the TC tensor k in two-dimensional wavevector space. When the summation
in Eq. (3.8) is done over all the allowable phonon modes only in the first quadrant of
the BZs, we obtain k& = 325.97, 134.64 and 101.45 W/mK for the SLG, AB-BLG and tBLG
samples, respectively. This means the 1st quadrant TCs of the same size AB-BLG and
tBLG samples are approximately 41% and 31% of the SLG sample, respectively. With
the symmetry arguments, we then estimate the total TCs for the full BZs, which give
total £ = 999.69, 458.63 and 322.09 W/mK for three respective samples. This decrease in
the TC across three samples can be explained with the help of Fig. 4.12a, where we show
the BM specific contribution towards the TC of the sample in the first quadrant of BZs
along high-symmetry I'-K, I'-M and M-K directions as well as non-symmetric (nsym)
direction available to the remaining modes not lying on either of the aforementioned

high-symmetry directions.

But, first we discuss the contributions of different BMs towards the TC within a
given sample for the phonon modes in the first quadrant of BZs. In the SLG sample,
the ZA, TA and LA modes have k in the increasing order along all symmetric and non-
symmetric directions. For example, ZA, TA and LA modes have k close to 4,16 and
68 W/mK along the I'-K, then 1, 36 and 58 W/mK along the I'-M and 16, 38 and 77
W/mK along the nsym direction. The optical modes values are almost negligible for all
directions. This trend, however, is not true for AB-BLG or tBLG sample. For the AB-
BLG sample, ZA,, TA; and LA; modes have close to 3, 2 and 13 W/mK TC along the
I'-K, then 1, 6 and 8 W/mK along the '-M and 11, 8 and 10 W/mK along the nsym di-
rection. The ZA,, TA; and LA, modes values are between 4 and 11 W/mK without any

noticeable trend. Only the nsym optical modes in AB-BLG have comparable contribu-
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Figure 4.12: (a) Basic modes contribution to the overall TC, £ (W/mK), along the high-
symmetry I'-K, I'-M and M-K directions and the non-symmetric (nsym) direction,
where the phonon modes in only the first quadrant of BZs are considered. The average
per mode per wavevector (APMPW) contribution to (a) TC £ (W/mK), (b) group ve-
locity v, (km/s), and (c) phonon lifetime 7 (ps).
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tion, close to 4 W/mK. For the tBLG sample, the values of the optical modes dominate
with close to 16, 18, 8 and 32 W/mK along I'-K, I'-M, M-K and nsym directions. Only
other significant contributions come from LA; and TA; modes along the I'-K with close
to 3 and 2 W/mK, and TA,, LA;, TA, and LA, along the I'-M with close to 3, 2, 4 and
6 W/mK, respectively. Other modes have contributions below 1 W/mK. In sum, the
LA and the TA modes contribute the most in SLG, all the acoustic modes and the nsym
optical modes have almost similar contributions in AB-BLG and the optical modes dom-
inate in tBLG samples. This domination of optical modes in tBLG samples is due to the
fact that more number of optical modes are involved as the zone-folding of BZ occurs
in tBLG which reduces the overall k£ contribution coming from the acoustic modes but
simultaneously increases the contribution from the optical modes. Another effect of
the zone-folding is an increase in the Umklapp scattering, which is also reflected in
the lower mean free path of phonons [155]. With the help of Eq. (4.3), we have also
been able to show in Section 4.2.1 that tBLG samples have the lowest mean free path of
phonons in an average sense. Across the samples, it can be reasoned that the SLG has
more TC than the other two samples because of the high contributions coming from
the LA and the TA modes.Another interesting result which this study has been able to
show is to quantitatively report the contributions coming from the high-symmetric di-
rectional modes as compared to the non-symmetric modes. For SLG, AB-BLG and tBLG
samples, the high-symmetry modes contribute close to 60%, 55% and 65% towards the
TCs.

However, this analysis alone does not provide the correct picture of the compar-
ison of the contribution of different BMs across different systems because the number
of allowable wavevectors varies for each BM across three systems. Hence, we define
average per mode per wavevector (APMPW)? contribution to the TC k, the APMPW
group velocity v, (magnitude of the group velocity vector) and the APMPW phonon
lifetime 7 along the symmetric or the non-symmetric direction in the first quadrant of
BZ as the total value of the property (k, v, or 7) corresponding to the specific BM di-
vided by the number of allowable wavevectors along the specified direction in the first
quadrant. This helps us compare these properties for all the BMs across the symmetric

and non-symmetric directions. For example, it can be observed in Fig. 4.12a for all three

*Note that this is average per basic mode per wavevector.
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samples that the nsym acoustic and optical modes, together in the combined sense, seem
to be contributing £ on par with the high-symmetry direction modes, however, when
compared in the APMPW sense, the high-symmetry direction modes are the highest
contributors, as seen in Fig. 4.12b. In an approximate sense, the APMPW £ is largely
the result of the APMPW v, and the APMPW 7 (see Eq. (3.8)) and therefore we also

discuss some trends in them.

As can be seen in Fig. 4.12c, the APMPW v,’s of LA and TA modes in SLG are
more than ZA and optical modes in all directions. In AB-BLG, however, ZA, , also
have comparable values in comparison to LA, ; and TA; ; modes. The optical modes
for AB-BLG still have the lowest APMPW v,’s in all directions, which is not the case
for tBLG samples. In tBLG samples almost all modes have values between 2 km/s to
10 km/s without any noticeable trend. For the lifetimes, the APMPW 7’s of LA and
TA modes in SLG are more than those of corresponding LA, ; and TA; ; modes in AB-
BLG or tBLG samples in all directions. The APMPW 7 of LA modes (31.37 ps) in I'-K
direction of SLG is the highest across all the samples and across all high-symmetry and
nsym directions. The ZA and optical modes in SLG have comparable APMPW 7’s with
respect to ZA; » and optical modes of AB-BLG or tBLG samples.

An interesting result in our study is that the TCs obtained through the SED method
for graphene systems are also size-dependent. We perform a size-dependent analysis
by altering the number of primitive unit cells N; and N, (N; = N, = N) taken along
the primitive lattice vectors p; and p, for our three systems. The results are shown in
Fig. 4.13. Following [156], we perform a linear fit between & and 1/N,, and then extrap-
olate the linear curve to get the y-intercept so that the bulk TC (k) can be obtained. In
Table 4.1, we show a comparison between the bulk TCs obtained with both the NEMD
direct method and the SED method for all three graphene systems.

This shows that the two methods give similar results for the bulk TCs for the SLG
and 21.78° tBLG samples, only 15% higher TCs with the SED method when compared
to the NEMD method. However, in case of AB-BLG sample, the SED method has almost
45% higher TC.

Although our TC values are on the lower side with respect to earlier studies, some

of which are mentioned in Section 1.1, the bulk TCs at 300 K for the SLG are in some
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Figure 4.13: Size dependency of the TCs of the SLG, AB-BLG and 21.78° tBLG samples

where the TCs are calculated with the SED method. The dashed red lines are showing
the extrapolation to obtain the bulk TC.

Sample  AYEMP (W/mK) £SEP (W/mK)

SLG 1287.2 1484.5
AB-BLG 582.8 845.4
21.78° tBLG 389.7 449.2

Table 4.1: Comparison of the estimated bulk thermal conductivity (
the NEMD direct method and the SED method.

ks ) values using
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agreement with experimental results of Cai et al. [39], SED results of Qiu and Ruan [52]
and three and four-phonon scattering based results of Feng and Ruan [157]. Similarly,
for the AB-BLG and tBLG samples, our results somewhat match with experimental re-
sults of Pettes et al. [56] for whom the misorientation angle was close to 11.7°, and then
with NEMD results of Wei et al. [61] who calculated the bulk TCs for AA-stacked SLG
and BLG samples. The bulk TCs of bilayer samples provided by Liu et al. [67] are in
close agreement with our results whereas the NEMD values of Li et al. [63] are compa-
rable with our SED values for AB-BLG and 21.78° tBLG samples. Moreover, if we are
interested in reproducing higher TCs obtained by some experiments, going as high as
5300 W/mK [38] for graphene, our calculation of lower TCs suggests that we need bet-
ter interatomic potentials for intralayer C-C interactions than the currently widely used
optimized tersoff potential [40], which has been shown to already provide maximum
TCs for SLG but after inclusion of four-phonon scattering, the TC value significantly

reduces to near 810 W/mK [157] at room temperature.

4.3 Summary

The size-dependent TC values of the SLG, AB-BLG and tBLG are first obtained using
the NEMD direct method where the heat flux has been calculated consistently using
Irving-Kirkwood’s definition. A critique of the TWD method has also been presented
which has been used as a measure of the heat flux in different studies. We show that
this method greatly overestimates the TC and should not be used. The extrapolated
bulk TCs obtained with the direct method are then compared with those obtained by
the SED method, which has also been shown as a size-dependent method for all three
graphene systems. The values obtained by the two methods have been found to be in
close agreement with each other, at least for the SLG and the tBLG systems. We adopt
the LD theory based SED ® approach unlike other approaches which use the alternative
phonon SED @’ approach. The latter leads to more scattering in the relaxation time
calculation and is not a reliable approach. For the AB-BLG and 21.78° tBLG systems, our
calculation of the phonon lifetimes with the SED based approach is consistent unlike

other approaches which use MD for the dispersion curves but DFT based packages for
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the calculation of the lifetimes. We also study the contributions of basic phonon modes
towards the TC of the samples in the first quadrant of BZs along high-symmetry as
well as non-symmetric directions. We find that the ZA, TA and LA modes have TC
contribution in the increasing order along all directions for the SLG, which is not true
for bilayer samples. The optical modes dominate in tBLG sample and all the acoustic
modes and the non-symmetric optical modes have almost similar contributions in AB-
BLG sample towards TC contribution. We also find that the high-symmetry modes
contribute the most for all three systems. We also conclude that SLG and AB-BLG have
similar average group velocities (8.4 and 8.3 km/s) but 30% higher than tBLG’s average
group velocity (6.4 km/s), and AB-BLG and tBLG have similar average lifetimes (3.9
and 3.8 ps) but 43% lower than SLG’s average lifetime (6.9 ps), which suggests that
the bulk TC (k o v;7) of the AB-BLG and tBLG samples should be around 55% and
28% of the SLG sample. It is quite interesting that bulk TCs reported in Table 4.1 from
the SED method show that indeed the values for the AB-BLG and tBLG samples are
approximately 57% and 30% of the bulk TC of the SLG.
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Chapter 5

Lattice Thermal Conductivity and
Phonon Properties of Polycrystalline

Graphene

In this chapter, we investigate the thermal transport in polycrystalline graphene
samples with polycrystallinity only along x-axis (XPC-G samples) with the help of
the robust and consistent normal mode decomposition (NMD) analysis based SED
method [81, 156]. These samples cannot be categorized under BC-G samples or ran-
domly oriented PC-G samples in the references cited above. First, almost similar size
samples with seven different symmetric misorientation angles and stable dislocation
cores are prepared and then the phonon properties and the TC tensor components, k.
and k,,, are calculated for each sample. A pristine graphene sample of the same size is
also studied for comparison. This is followed by a size-dependent analysis of thermal
transport for pristine graphene and xPC-G samples with two different misorientation
angles, 21.78° and 32.2°, so that bulk TCs of graphene with GBs of different misorien-
tations can be compared. Contrary to other works on PC-G samples cited above, our

work establishes strong dependence of the TCs of xPC-G samples on misorientation
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angles.

The structure of the study is as follows. Section 5.1 describes the sample prepa-
ration method for xPC-G samples with different misorientation angles. In Section 5.2,
we perform MD simulations necessary for the SED analysis. We discuss the results in
Section 5.3 after calculating the phonon group velocities with the help of the harmonic
lattice dynamics based GULP package and phonon lifetimes by fitting the SED curves
to the Lorentzian function. In this section, we also obtain bulk TCs of three graphene
systems with the SED method. Finally, we conclude in Section 5.4 with a summary and

suggestions for any future work.

5.1 Sample Preparation

We follow the centroidal Voronoi tessellation based algorithm proposed by Ophus et

al. [158] to generate symmetric GBs in graphene. We prepare xPC-G samples with

seven different misorientation angles, where each misorientation angle § = 6, + 0y

can be defined through translation vectors (nz, m;) and (ng, mpg) corresponding to the

left and the right domains along the GB, respectively[159]. For symmetric GBs, we
m (2n+m

have n; = np = n, my = mr = m, 0 = O = g—arctanT) and n and m

are integers [159, 158]. The corresponding periodic length along the GB direction is

L, = a+/3(n® + nm + m?), where the average C-C bond length a = 1.397 A. Following
Yazyev and Louie [160], the simulation supercell for the SED method, involving two
parallel equally spaced GBs, is rectangular of length L, and width L, in order to sat-
isfy periodic boundary conditions (PBCs). This means the unit cell vectors, Vi = L,i
and V, = Lyj, of the supercell are orthogonal to each other, where i and j are unit
vectors in the Cartesian plane. Although close to L, = 4 nm is sufficient to maintain
stable GB structures, as this significantly reduces the influence of elastic interactions
due to neighbouring GBs [82, 160], we have taken L, = 6 nm for all our samples.
Thus, two neighbouring GBs are separated by 3 nm, which also becomes the grain
size along x-axis. The superunit cells for (n.m) xPC-G samples with different misori-
entation angles ¢ have been shown in Figs. 5.1b-5.1h. The primitive unit cell of the

pristine graphene (1, 1) sample is created by two planar lattice vectors Vi = /3ai and

66



(d) (1,2) 21.78°

(f) (1,3) 32.20° (g) (1,5) 42.10° (h) (1,6) 44.82°

Figure 5.1: Close to 180 x 32 A? size pristine graphene sample and xPC-G samples with
seven different misorienation angles. The schematic diagram of the primitive unit cell
vectors of the SLG sample is shown in (a) and rectangles created by black boundaries
in (b)—(h) show the primitive superunit cells of commensurate unit cell for xPC-G sam-

ples.
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= /3a(cos 60°1 + sin 60°j), as shown in Fig. 5.1a.

5.2 Computational Details

Now, we reiterate some basic principles of the SED method which has been explained in
details in Abhikeern and Singh [81]. Based on the Fourier’s law and the phonon Boltz-
mann transport equation (BTE) under relaxation time approximation, the TC tensor of

a system is given by
k= ZZC V) @vy(5) () (5.1)

Here, the summation is over all allowed normal modes in the first Brillouin zone (BZ),
and each mode (¥) is denoted by wavevector x and dispersion branch v. Moreover,
c(®), v (%) and 7(¥) are the mode specific volumetric specific heat, group velocity
and phonon lifetime, respectively. We take ¢, (%) = kg/V [156] for all modes for classi-
cal MD simulations, where kg is the Boltzmann’s constant and V' is the volume of the
simulation box. The group velocity v,(¥) = 80:)(: ) is obtained by using finite difference
method over a fine grid of wavevectors around the given mode (¥). The GULP pack-
age [140] is used for calculating the normal mode frequencies w(f’) and eigenvectors.
Based on the primitive unit cell of pristine (1, 1) graphene, and primitive superunit cells
of (1,2) and (1, 3) xPC-G with 21.78° and 32.20° misorientation angles, respectively, the
phonon dispersion curves of these three configurations in the first BZ have been pro-
vided in Fig. 5.2. We provide the phonon dispersion curves in the first Brillouin zone
(BZ) for the pristine graphene along I' — M direction and xPC-G samples with 21.78°
and 32.20° misorientation angles along I' — X direction based on their respective prim-

itive unit and superunit cells where similar to [161] we obtain some high frequency

modes which are flat.

The phonon lifetime for a mode is calculated by fitting a Lorentzian function over
the SED curve, which is determined by the normal mode decomposition method by
projecting the equilibrium MD simulation based atomic positions and velocities onto

the normal mode coordinates.
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Figure 5.2: Dispersion curves in the first BZ for (a) SLG with 2 basis atoms along I' — M
direction, (b) 21.78° xPC-G sample with 152 basis atoms and (c) 32.20° xPC-G sample
with 204 basis atoms along I' — X direction. Insets in (b) and (c) show the zoomed area
of the same dispersion curves with upper limit of frequency constrained to 4 THz. The
insets show the respective BZ of SLG and xPC-G samples and the first quadrant chosen

for the the discretization of BZ due to its symmetry.
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We describe the simulation details below. The primitive superunit cell for (n,m)
structure is repeated N, and N, times along x and y axes, respectively, to construct a
sample of the required size. To ensure the lowest possible energy state for the GB, we
tirst perform energy minimization over this structure with PBCs along all axes, where
the C-C interactions are modeled by the original REBO potential [162]. The equilibrium
MD simulation is then performed with multiple MD runs where MD time step was
taken as Atyp = 0.2 fs. In the first run, atoms are simulated under NPT ensemble
conditions with zero pressure and 300 K temperature for 2 x 10° MD steps. The next run
is performed under NVT conditions with 300 K for 2 x 10° MD steps. The Nosé-Hoover
chain thermostats are used for these NPT and NVT runs. The final run is performed
for another 2'® MD time steps under NVE conditions to ensure steady-state conditions
without any corrupting influence of thermostats. The package LAMMPS [149] is used
for all MD simulations and energy minimization. We choose the wavevectors in the
first quadrant (hexagonal BZ for SLG and rectangular BZ for xPC-G samples) to exploit
both the symmetry of the BZ and the simplicity in discretization of the BZ [52, 81] as
shown in the insets of Fig. 5.2. The SEDs are first calculated for a chosen wavevector
and dispersion branch v in the first quadrant and for all its symmetric copies in other
quadrants of the first BZ, and then they are averaged over for a single MD simulation.
Then, we perform five different MD simulations with different initial atomic velocities
so that a final average of SEDs for all simulations can be considered for the extraction

of the phonon lifetime for a given mode.

5.3 Results

Using the primitive superunit cells defined above, we prepare same-size pristine graphene
and seven xPC-G samples with different § corresponding to (n, m) translation vectors.
In order to achieve an approximate size of 180 x 32 A2, the number of unit cells required
along x and y axes, N, and Ny, respectively, for different (n, m) samples has been listed

in Table 5.1.

The table also mentions the unit cell length L, along y-axis and the number of

atoms per unit cell for each sample. For all our samples, we obtain excellent Lorentzian
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Table 5.1: Number of unit cells required along x and y axes, Ny and Ny, respectively, to

obtain 180 x 32 A? size samples with different misorientation angles 6.

0 (n,m) Ly, (A) Unit cell atoms (Nx, Ny)

0 (1L,1) 210 2 (73,14)
943 (34) 1471 344 (3,2)
1317 (23) 1055 248 (3,3)
2178 (12) 640 152 (3,5)
2780 (2,5) 15.11 356 (3,2)
3220 (1,3) 872 204 (3,4)
4210 (15) 1347 320 (3,2)
4482 (16) 1586 372 (3,2)

fits for the SED curves.

We particularly show the Lorentzian curve fitting over the SED data for 21.78° and
32.20° xPC-G samples for a chosen wavevector k = [/6a,0,0] and one of the optical
dispersion branches in Fig. 5.3. The fitting provides not only the phonon lifetime 7 but
also the anharmonic frequency wy as the center of the Lorentzian fit over the SED curve.
These anharmonic frequencies match closely with the harmonic lattice dynamics based
frequencies. For illustration, we provide excellent match for all available modes for a
given wavevector k around the “X” point as shown in Figs. 5.3c and Figs. 5.3d for 21.78°
and 32.20° angles, respectively. Hence, it is established that the harmonic frequencies

are a good approximation for the vibrational modes at the room temperature.

The fitting provides not only the phonon lifetime 7 but also the anharmonic fre-
quency wy, matching with the GULP based normal frequency w, as the center of the
Lorentzian fit over the SED curve. The phonon lifetimes (7), group velocities v, =
(m ) and mean free paths along x and y axes, Iy = v, 7 and I, = v, 7, obtained
for the allowable modes in the first quadrant of the first BZs of pristine graphene and
two xPC-G samples with § = 21.78° and 32.20° have been shown in Fig. 5.4. With a
total of 1533, 1710 and 1836 modes for these three systems, respectively, it makes more
sense to talk about root mean square (rms) of group velocities v, average of phonon

lifetimes (7) and average of mean free paths, (I;) and (1), rather than individual acous-
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Figure 5.3: The Lorentzian fit for the SED data obtained at wavevector k = [7/6a, 0, 0]
and an optical dispersion branch for (a) 21.78° and (b) 32.20° xPC-G samples. Compar-
ison between the GULP generated harmonic lattice dynamics frequencies (LD Data) w
and the Lorentzian curve fitted anharmonic frequencies wy for all available modes at X

symmetric point with wavevector k = [7/a, 0, 0].
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Figure 5.4: (a) Phonon lifetimes in ps, (b) group velocities in km/s, and mean free
paths (c) Iy and (d) 1, of the allowable normal modes in the the first quadrant of the
BZs for pristine SLG (red) and xPC-G with 6 = 21.78° (blue) and 0 = 32.20° (magenta)
samples, which are prepared with N, x Ny primitive unit cells, where N, = 73,3,3
and N, = 14,5, 4, respectively, for three systems. The solid horizontal lines show the

average values.
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tic or optical modes, where the average is taken over all available modes in the first
quadrant of the first BZ. We obtain (7) = 3.33,2.25,1.69 ps, v,,,.. = 6.93,2.67,1.91 km/s,
() = 121.1,27.7,17.3 A and (l,) = 152.1,28.0,17.5 A, respectively, for three systems
shown in Fig. 5.5 with solid horizontal lines. Later, we also show x and y components of
Vgome iN Fig. 5.5b and (7) in Fig. 5.5¢ for all angles. We note that average mean free paths
are less than the grain size along x-axis (30 A) for xPC-G samples. We also observe
that around 90% of the phonon modes have their mean free paths less than 30 A along
both x and y axes for all seven different misorientation angles. This was expected for
I since phonons would scatter at the GBs, however, 1, also showing similar trend is an

interesting result.

Having obtained all phonon properties, we use Eq. (5.1) to obtain the TC ten-
sor components ky, ~ 87,29,28,88,35,56,25,14 W/mK and k,, ~ 80,7,27,80,5, 54,
9,3 W/mK for pristine graphene and seven different misorientation angles listed in Ta-
ble 5.1 in increasing order. With respect to the pristine graphene, maximum reduction
in the TCs is found in the last sample with 44.82° angle, almost 84% and 96% reduction
for k. and ky,, respectively. As reflected in the values and also shown in Fig. 5.5a, the
TCs strongly depend upon the misorientation angles. We also note that except for sam-
ples with 13.17° and 32.2° tilt angles, there exists strong anisotropy along x and y axes in
the TCs for other angles. Also, the TCs for 21.78° sample is the highest among all xPC-
G samples. These trends in TCs can be explained in terms of the trends in the group
velocities and the phonon lifetimes, which were found to be uncorrelated for all xPC-G
samples. Since ky, = Y, (%) vZ (¥)7(%), and we have taken ¢,(¥) = kp/V = ¢,
for all modes, hence, the average of ky, over all n modes in the first BZ can be writ-
ten as (ky) = nc, (vi, ) (1) = ne,v (1), provided that correlation coefficient p of v2,
and 7 for all modes is close to zero. The similar argument holds for (ky,). The aver-
ages of TCs defined in this way are denoted as (k.); and (kyy);. We calculate p(v ,7)
and p(v; ,7) and plot them for all angles in Fig. 5.5d. All correlation coefficients were
found to be in the range of 0.2% — 1.9%), i.e. they are close to zero. This suggests that
group velocities and phonon lifetimes are uncorrelated for all XPC-G samples. We ob-
tain (ky), ~ 27,24,86,28,50,21,12 W/mK and (ky), ~ 7,25,123,5,45,6,3 W/mK for
seven different angles in the increasing order. They are also plotted in Fig. 5.5e and

we observe that values closely match with actual k. and ky, reported earlier, except
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Figure 5.5: For all misorientation angles, (a) ki« and kyy, (b) x and y components of
Viumss (€) (7), (d) correlation coefficients p(v; ,7) and p(v; , ), (e) ki, and ki, in solid

lines and ki, and ki, in dashed lines.
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for 21.78° sample for which (ky,), = 123 W/mK whereas k,, = 80 W/mK, i.e. an in-
crease of around 54% is found. This deviation can be attributed to 21.78° sample hav-
ing a slightly higher p(v; ,7) and the highest v, . Butin general, we can assert that
(kaxyy) = Kaxyy); = Kaxyy and it can be emphasized that an average phonon mode
can be defined whose group velocity components along x and y axes are the rms of
group velocity components of all phonon modes and whose lifetime is the average of
all phonon lifetimes. Therefore, anisotropy in the TC components is largely the out-
come of anisotropy in the group velocities, since lifetimes remain the same for both zz
and yy components of the TC. The maxima and minima of the TC components across
all angles, however, have to explained both in terms of maxima and minima of x and y

components of v, and also those of (7).

Next, we express group velocity and phonon lifetime as distribution functions of
normal mode frequencies so that the TC components can also be written as distribution
functions of frequencies. This can potentially help in the semi-analytical and numerical
solutions of the BTE [163]. For that, we first show phonon density of states (DOS)
in Fig. 5.6a, where DOS(w)dw represents the number of modes lying between w and
w + dw. We observe that the DOS remains almost the same for all GB angles [75].
This is followed by calculating the sum of v, along x axis for all modes lying in the
frequency range [w, w+dw) and then dividing by the total number of modes in the same
range, which we denote as v, . Similarly, we define v, and 7 for v, along y axis
and 7, respectively. Basically, they are distribution functions of w and can be treated as
average properties of phonons in [w,w + dw). For any given angle, we find that natural
semi-log plots of v, (w) and v, (w) can be fitted with straight lines as shown in
Figs. 5.6b and 5.6c, respectively, and the natural semi-log plot of 7(w) can be fitted with

a piecewise constant function in Fig. 5.6d. Therefore, we can write,

asw

Vesrms (w) =aje ) w e [O7wmax] (52&)

Veyrms (w) = ble_b2w7 w € [07 Wmax] (52b)

Fw) =4 " we [0, (5.20)

Ca, wE (wdywmax]

76



400 | ‘ 2
——0.43°
350 | |——13.17°
—21.78°
é‘ 300 27.80°
B | |——32.20° -
7 250 11 40100 )
+ o 4
g 200 | 44.82 \_/é
8 150 + 55
A

Ve (km/s)

0 20 40 0 20

w (THz) w (THz)
(©) Vgyrn (d)7
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where w’s are in THz, group velocity components are in km/s, lifetimes are in ps,
ai, ag, by, by, c1, ¢y are constants, wy < wnax is the frequency at which discontinuity in
7 emerges and wnx is the maximum frequency beyond which the phonon properties
can be assumed as zero. Interestingly, we find that w,; = 32 THz and wy.x = 52 THz are
the same for all xXPC-G samples. The values of the constants appearing in Eq. (5.2) for

different misorientation angles are provided in Table 5.2.

Table 5.2: a4, ay, by, by, ¢1, and ¢, for different GB angles.

0 ay as by by c1 Co
943 2182 0.033 0.554 0.012 1.704 0.311
13.17 3.360 0.035 2.020 0.012 1.170 0.171
21.78 2735 0.027 2534 0.010 2.654 0.259
27.80 2.094 0.040 0.605 0.019 2.298 0.260
3220 3.031 0.035 1.992 0.016 2.550 0.205
4210 2.282 0.045 0.768 0.023 1.624 0.197
4482 1.699 0.033 0.663 0.023 1.115 0.222

Based on this, we calculate another measure of the TC components as

R / DOS(w) (o) 7l do, (53)

where ¢, = kp/V as defined above. The values obtained for xPC-G samples with in-
creasing angles are (k) ~ 25,42,77,28,82,19,11 W/mK and (ky,);; = 3,28, 105, 4, 56,
4,2 W/mK. We find that (k. yy);; vary within £60% range of the actual k, ,, calculated
by Eq. (5.1), and therefore, we can assert that (kyx yy);; = Kaxyy T 0.6 Ky yy -

The TCs obtained through the SED method are size-dependent [81]. A size-dependent
analysis is performed for xPC-G samples with § = 21.78° and 32.20° by increasing the
number of primitive superunit cells along y-axis, Ny, but keeping N, same because we
reason that the x-axis length, around 18 nm, is too large to significantly affect the TC
components if we further increase Ny. In Ref. [81], we calculated the TC for SLG up to
50 A length along x-axis, and the TC deviated from the bulk value by only 10%. We

chose these two angles because they have the least number of basis atoms in comparison
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to xPC-G samples with other misorientation angles, specifically, 152 for 21.78° and 204
for 32.20°, which makes the computation more tractable. We take Ny, = 5,6, 7,8 and 9 for
21.78° samples and Ny = 4,6, 7 and 8 for 32.20° samples. The results for TC components

k. and ky, are shown in Fig. 5.7. Following Ref. [81], we perform a linear fit between

500 w w
N F KT
AN |2L.78
N vy
400 \ i k32.20 §
N * 32.20
S AN 3 ky
—~~ R S N
k<4 300 r Sy §\ N AN
» 200 ¢
100 EN '
x
il
O L
0 0.1 0.2

Figure 5.7: Size dependency of the TCs of the xPC-G samples with § = 21.78° and

) = 32.20°. The dashed lines are showing the extrapolation to y-axis to obtain the bulk
TC.

kyxyy and 1/Ny and then extrapolate the linear curve to obtain the bulk TC (kg ). We
calculate k37 = 369 and 320 W/mK, and k3 = 488 and 327 W/mK for 6 = 21.78° and
32.20°, respectively. The bulk TC values for 32.20° match closely with Fox et al. [78]
who calculated around 312 W/mK for 32.20° BC-G samples with the NEMD method.
For the pristine graphene studied here, k3 = 563 and kj; = 863 W/mK. Therefore,
k3, decreased by 34% and 43% and k{5 decreased by 43% and 62%, respectively, for the
two angles with respect to the pristine graphene. We also note that the 32.20° sample
does not show much anisotropy in the bulk TC components whereas the 21.78° sample

shows strong anisotropy.
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54 Summary

In conclusion, we predict the phonon properties of xXPC-G samples with seven different
misorientation angles with the equilibrium MD simulations and the SED method. Our
work concludes that the TCs of xPC-G samples strongly depend upon misorientation
angles. We also find that the square of the group velocity components along x and y
axes and the phonon lifetimes are uncorrelated for all samples, which allows for the cal-
culation of TCs in terms of an average phonon mode whose group velocity components
are the rms of group velocity components of all phonon modes and lifetime is the mean
of all phonon lifetimes. We explain anisotropy in the TC components for some angles
with the difference in the rms of group velocity components of all phonon modes along
x and y axes. Further, the DOS for all xPC-G samples are found to be independent of
the misorientation angles. Based on the DOS, distribution functions of phonon prop-
erties have been calculated and plotted as semi-log plots against the phonon normal
frequencies. The distributions of group velocity components are found to be exponen-
tially decaying whereas the distribution of phonon lifetime showed piecewise constant
function behavior with respect to frequency. This is reflected in the distribution of TC
components, which also show exponentially decaying behavior against frequency. We
provide the parameters for the exponential and piecewise constant functions for the
group velocity components and lifetimes, respectively. We provide another measure of
the TC based on these functions and estimate that their values are within +£60% range
of the actual TC values. Finally, we perform the size-dependent analysis for two angles,
21.78° and 32.20°, and calculated their bulk TC components, which are found to have
decreased by 34% to 62% in comparison to the bulk TC values of the pristine graphene.
We end with a suggestion that the frequency dependent distribution functions sug-
gested for the rms of group velocity components and the phonon lifetime can be used

in multiscale semi-analytical and numerical solutions for the solutions of the BTE.
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Chapter 6

Single Layer Graphene with Strain and
Ripple

In the previous chapters, with structural changes such as stack of graphene layer
with Moiré patters and grain boundaries in single layer graphene, we examined the
thermal properties of these modifies structures. Building on that understanding, this
chapter explores the influence of strain on SLG, specifically how mechanical deforma-
tion alters its thermal and mechanical properties. Investigating the strain effect is cru-
cial as it focuses on graphene’s properties for applications requiring high flexibility and

durability, such as in flexible electronics and nano-mechanical systems.

The aim of this chapter is to investigate the thermal conductivity (TC) properties
of single layer graphene, with a particular focus on understanding phonon behavior
and energy transport in the presence of an externally applied strain. To achieve this,
we utilize Spectral Energy Density (SED) analysis, which allows us to decompose the
energy distribution of phonon modes across the frequency spectrum. By examining
these modes in detail, SED analysis provides crucial insights into how phonons con-

tribute to thermal transport by looking into the changes in their group velocities and
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lifetimes in the presence of external strain also including the identification of dominant

heat-carrying modes.

The structure of the study is as follows. Section 6.1 details the sample prepara-
tion process for single layer graphene with different strain. In Section 6.2, we conduct
molecular dynamics (MD) simulations necessary for performing SED analysis. Section
6.3 discusses the results obtained, including phonon group velocities calculated via the
harmonic lattice dynamics using the GULP package and phonon lifetimes derived by
fitting the SED curves to Lorentzian functions. Additionally, in this section, we cal-
culate the thermal conductivities (TCs) of the different strained single layer graphene
systems using the SED method. Finally, Section 6.4 provides a summary of the findings

and recommendations for future work.

6.1 Sample Preparation

Armchair direction

Zigzag direction

Figure 6.1: Comparison of unstrained (light blue) and 3% strained pristine graphene

(dark blue). Strain is applied in the zigzag direction.

Fig. 6.1 shows the unstrained SLG in light blue color and strained SLG in dark blue
color. First, we describe the construction of SLG samples. The two planar lattice vectors
taken for the formation of the primitive unit cell of the SLG samples are V; = a(1 + €,3,)i

and V, = a((1 + €,g) cos 60°1 + sin 60°j) in A, where i and j are unit vectors along x and

y axes, respectively, as shown in Fig. 6.1. Also, lattice constant a = 2.492 A and e, is
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the strain applied in the zigzag direction as per Eq. (6.1):

Vi, — Vi,

- (6.1)

€x = €Ezig =

x

a) Strain = 0% PV b) Strain=1.4% c) Strain = 2.4%

PV

RHSV

RHSV RHSV

d) Strain = 3% e) Strain=7% f) Strain = 10%

RHSV TV

Figure 6.2: Structural changes in pristine graphene with the application of strain for
a sample size of 150 x 100A. It is observed that such a large sample length has a
pronounced ripple effect at 0% strain, which keeps on decreasing as the strain in-

creases [164].

For our NMD analysis, we chose Ny x N, primitive unit cell samples, where N; =
N, = 12 which corresponds to a sample size of 31 x 26 A. A small graphene sheet
produces negligible ripples. We characterize the ripples in terms of their magnitude
(AZ) which we quantify as the time average of the absolute difference between the
maximum and the minimum out-of-plane (z) coordinates of the sample. For the SLG

sample of size 31 x 26A , we obtain AZ ~ 1A . But for a sample length of 150 x 1004 ,
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the ripple effect is much stronger, which keeps on decreasing as we keep increasing the

strain as shown in Fig. 6.2.

6.2 Computational Details

The computational details employed in this study are outlined below. As per Sec-
tion 3.2, in order to obtain the position and velocity vectors of atoms over time for
the SED analysis, we used Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) using optimized Tersoff potential. The initial energy minimization is
performed under periodic boundary conditions along all axes. This is followed by
an equilibrium MD simulation consisting of multiple MD runs with a time step of
Atyp = 0.2 fs. The first run is conducted under NVT conditions at a temperature of
300 K for 5 x 10° MD steps utilizing the Nose-Hoover chain thermostat. The second run
is performed under NVE conditions for another 10° MD steps. Subsequently, an addi-
tional 2'® MD steps are carried out under NVE conditions to ensure that steady-state
conditions are reached without the influence of thermostats. Atomic positions and ve-
locities are recorded every 22 time steps. Five separate simulations with different initial
velocities are conducted to create ensemble replicas, and the averaged SEDs from these

replicas are used to extract the phonon properties.

Similar to Section 3.2, only the allowed wavevectors are used in Eq. (3.8), as ap-
plicable for crystalline structures [83]. The vectors b; represent reciprocal lattice vec-
tors, which are employed to construct irregular hexagonal Brillouin Zones (BZs) for
all strained systems studied, as illustrated in Fig. 6.3. With the help of the harmonic
lattice dynamics based GULP package, we obtain the phonon dispersion curves along
the symmetric I'-M direction as shown in Fig. 6.4. Using the GULP package we also ob-
tain the phonon density of states (PDOS) and eigenvectors. Further, following the ap-
proach of Qiu and Ruan [51, 52], we leverage both the symmetry of the BZ and the ease
of discretization to select allowed wavevectors within the first quadrant of the regular
hexagonal BZ for unstrained system and irregular hexagonal BZs for all strained sys-
tems, which have symmetric counterparts in the other quadrants. SEDs are calculated

for all allowed wavevectors corresponding to the first BZ. These are then averaged over
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ten MD runs with different initial velocities and further averaged over for each of the
chosen symmetric wavevector in the first quadrant before performing the Lorentzian

titting of these SED data to determine the phonon properties.

The second part of the study with regard to the ripple effect was performed by my
PhD colleague Abhishek Kumar and data related to Green Kubo study have been taken
from his permission ([164]). For the GK analysis in the pristine graphene simulation
was performed using optimized Tersoff potential for a sheet size 150 x 100 A with a
total 6048 number of atoms. Periodic boundary condition was used in the x and y di-
rections, whereas shrink-wrapped boundary conditions were used in the z-direction
with a timestep of 0.001 ps. In order to equilibriate the system at 300 K, initially energy
minimization is performed which is then followed by NPT run for 1 ns and then fur-
ther with a 1 ns of NVT run. The last step under NVT environment which is also our
production run is performed for a total of 6 ns from which we obtain the heat current
data for each timestep. Thus using this data we conduct the GK analysis to determine

TCs which is further explained in detail in the subsequent sections.

6.3 Results

6.3.1 Strain Effect on Thermal Conductivity

Fig. 6.3 shows the BZs of the sample graphene chosen. As we increase the strain in the
zigzag direction, the BZ shape also changes as shown in 6.3 where the comparison of

BZ'’s are shown for 0%, 3% and 10% strained pristine graphene samples.

Similar to the dispersion curve obtained for the longer wavelength (ZA mode) in
[165], the dispersion curve here is obtained from GULP [140] for the 0.0%, 0.9%, 1.4%,
3.0%, 4.0%, 7.0% and 10.0% strains in the direction of I' — M, as shown in Fig. 6.4. In
particular, the ZA modes particularly show the deviation from w  k* to w  k as the
strain increases. The frequencies for all other modes i.e TA, LA, ZO, TO and LO modes
decreased as we keep on increasing the strain. This flattening occurs because the ap-

plied strain weakens the bond stiffness, making it harder for the phonons to propagate

85



0%
3%

—10%

Figure 6.3: BZ comparison of unstrained (0%), 3% and 10% strained graphene. b; and

by are the reciprocal lattice vectors.
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Figure 6.4: Dispersion curve comparison of unstrained and strained graphene along

I' — M direction.

through the lattice as quickly as they would in unstrained graphene. The distributions
of vy and phonon lifetimes 7 for all the allowed phonon modes in the 1¥ BZ are shown
in Fig. 6.5a and Fig. 6.5b, respectively. As strain is applied, the force constants (which
depend on the bond stiffness) between the carbon atoms change. This leads to a modifi-
cation in the phonon dispersion curves. The effect of such a decrease in the above mode
strengths is evident in the overall decrease of the v, _ as strain increases, as shown in

Fig. 6.6. The term v, signifies a statistical measure of the group velocity, which has
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(b) 7

Figure 6.5: (a) v, (km/s) and (b) 7 (ps) comparison of unstrained and strained

graphenes.
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already been defined in Chapter 5. It can be observed in Fig. 6.5a that the maximum
v, for all the strain occurs in the range of 20-40 THz. As strain increases the distribu-
tion tends towards the lower values, which is evident from the decreasing trend of the
average squared group velocity v; , as shown in Fig. 6.6a. A key observation is that
few modes show null v, values for the strained graphene samples, which is occurring

because of the flattening of the dispersion curves.
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Figure 6.6: (a) v2 _ (km?/s?) (b) 7 (ps) (c) [ (nm) and (d) k (W/mK) comparison of

unstrained and strained pristine graphenes for 31 x 26 A size.

While strain directly affects the group velocity by altering the lattice dynamics, the
scattering processes which dictate lifetime 7 are not as sensitive to strain, especially if
the strain is not causing substantial defects or changing the material’s anharmonicity.
Thus there is no evident change in the phonon lifetimes while strain is increased, which
can be observed in Fig. 6.5b. The lifetime 7 distribution for the allowed phonon modes

do not show a significant decrease in the average lifetime as the frequency keeps on
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increasing (Fig. 6.6b) and follows a similar trend for all the strains. This is further
verified by an almost constant average lifetime trend for all the strain values as shown in
Fig. 6.6b. Moreover, we observe from Fig. 6.5b that the 7 distribution shows a decreasing
trend for all the strains as the frequency increases. Near the BZ centre, the phonon
lifetimes of ZA modes are found to be as high as ~ 100 ps. This is because the phonon

density of states (PDOS), as shown in Fig. 6.7, is very small near the zone centre. This
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o
—
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~— 0.04
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Figure 6.7: DOS comparison.

means that less number of modes are available for scattering to occur such that the
momentum can be conserved. This results in lesser scattering and thus higher phonon
lifetimes. Apart from the BZ centres, the maximum distribution of 7 was found between
20 to 40 THz frequency ([24]) for all the strains because the PDOS is higher in this
frequency range. It is also observed in the Fig. 6.7 that as the strain is increased, the
PDOS distribution also shifts accordingly towards lower frequency. The mean free path
(mfp) is given by 1 = v, x 7 which shows an overall decreasing trend (Fig. 6.6¢) as
the strain is increased which is because of the the decreasing trend of v, and an almost

constant behaviour of 7.
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Subsequently, once the mode properties 7 and v, are obtained, we can then calcu-
late the TC of strained graphene structures according to Eq. (5.1). Similar to previous
studies, we again choose the wavevectors in the first quadrant due to the symmetry of
the BZ [52, 81]. As shown in Fig. 6.6d, the TC keeps on decreasing as the strain is in-
creased [106, 166]. As mentioned earlier, the decrease in TC of ~ 56% from 0% to 3%
is due to the decrease of ~ 40% alone in vg, as shown in Fig. 6.6a, while the rest of the
reduction is due to slight decrease in the 7 (Fig. 6.6b) . Similarly, for the region from
3% to 10% strain, the TC decreases by ~ 31% whereas the v decreases by ~ 28% and
the rest of the decrease is attributed by 7 decrease. This establishes that the main factor

affecting the TC is the v, when there is only a strain effect.

150 ‘

I 0.0%

B 1.4%

B 2.4%
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E I 10.0%
Y 50 + i

ZA TA LA Z0 TO LO

Figure 6.8: Variation of thermal conductivity with strain(%) for pristine graphene

Fig. 6.8 shows the contributions by different modes of graphene to the TC for the
1% quadrant. The total TC is then calculated by summing up the contributions coming
from the corresponding symmetry wavevectors of the 1* quadrant wavevectors in the
other 3 quadrants of the BZ. It is found that the highest contribution to the overall TC
comes from the LA modes, accounting for almost 40 — 67% for all the strain values. The
next highest contribution comes from the TA modes, which contribute almost 17 — 24%
[53]. The contribution of the ZA modes increased from 5% to 28% as the strain increased

from 0 to 10%. This is evident from the fact that the slope of the ZA modes (v,,, ) for
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different strains keeps on increasing as the stain is increased (Fig. 6.4). The TO and
LO modes in the combined sense give a maximum 3% contribution because their v, is
the lowest among all the branches while the ZO modes contribute with a maximum
of 6% — 14%. Overall the acoustic modes contribute 84% — 93% to the total TC of 540,
458, 384, 347, 339, 326 and 240 W/mK for 0.0%, 0.9%, 1.4%, 3.0%, 4.0%, 7.0% and 10.0%

strain.

6.3.2 Ripple Effect on Thermal Conductivity

A graphene sheet has intrinsic ripples in it. It has been shown in previous studies that
as we keep on increasing the size of a graphene sheet, the ripples start becoming more
pronounced [93]. To distinguish between the effects of ripple and strain on TCs, we
study strained graphene from 0% to 10% strain for two different sample sizes of 31 x
26A with the help of the SED method described in Section 3.2 and 150 x 100A with
the help of Green-Kubo method described in Section 3.3.

We hypothesize that the total percentage change in TC with increase in strain by
the same magnitude should be almost the same for both these samples. Additionally,
the 31 x 26 A sample being small shows a negligible ripple effect AZ of less than 1A,
whereas the ~ 150 x 100 A sample shows a maximum AZ of ~ 15A as shown in
Fig. 6.9a. As there is almost no ripple in the 31 x 26 Asample, the NMD analysis on
this sample found a total decrease of 31% in the TCs when the strain increased from
3% to 10%. The 150 x 100 A samples also do not have ripples, AZ ~ 0 A, in the strain
range 3 — 10%. The Green Kubo analysis for this range gave a decrease of ~ 30% in the
TC(Fig. 6.9b). That means both samples do not have ripples in the strain range 3 — 10%,
and therefore, the similar decrease (31% to 30%) in the TC can be attributed to only the
strain effect in both these samples. This provides a reasonable ground to argue that the
NMD analysis for the smaller sample reveals similar thermal transport behavior to the

Green-Kubo analysis for the bigger sample.

Now, for the 0—3% strain range in the 150 x 100 A sample, there are both ripple and
strain effects. We calculated the percentage change in the TC in the 31 x 26 A sample by
NMD analysis which resulted into ~ 36% decrease. This decrease is attributed solely to
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Figure 6.9: Variation of thermal conductivity with strain(%) for pristine graphene

[164].

the strain effect because there are no ripples in the smaller sample, i.e. %

K ‘ strain

. Since
we already have established that the strain effect is the same on both samples, the same

percentage should be in the 150 x 100 A sample in the 0 — 3% strain range. Whereas
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the Green Kubo analysis on the ~ 150 x 100 A sample gave an overall increase of

(4= ~ 25% in the TC Fig. 6.9b. Thus, according to the Eq. (6.2), where we have

K ‘ overall )

hypothesized that the strain and the ripple effects can be linearly decoupled, an increase

of ~ 61% should be attributed to the ripple effect (9*| . ).

dk dk dk
& — & (6.2)
overall K strain K ripple
In other words, we have 4|~ — 4|~ —de| = —25% — (—36%) = 61%. This

means when we had calculate the bulk TC of the SLG [81] as 1484.5 W/mK, the reduc-
tion in the ripple could increase this bulk value to around 61% more TC, which will be

around 2390 W/mK.

6.4 Summary

In this study, we have extensively investigated the impact of strain and ripple effect on
the TC of single layer graphene (SLG). Our computational analysis on a small sample
size has very less out-of-plane fluctuations A Z vibration. Using the lattice dynamics ap-
proach, it is revealed that the application of strain, particularly in the zigzag direction,
leads to significant changes in the phonon dispersion characteristics, notably affecting
the out-of-plane acoustic (ZA) modes. This strain induces a transition from a quadratic
to a linear relationship between frequency and wavevector, which is directly linked to a
marked reduction in group velocity v, in the ZA modes. The reduction in v, is primar-
ily attributed to the weakening of bond stiffness under strain, which in turn reduces
the phonon propagation. The PDOS shifts towards the lower frequencies as the strain
is increased. The NMD analysis provides additional insights into the phonon mode
contributions, demonstrating that the LA modes are the highest contributors to the TC,
followed by the TA modes, with TO and LO modes being the lowest contributors across
all the strain values. Additionally, our analysis indicates that phonon lifetimes 7 are less
sensitive to strain. Quantitatively, the strain leads to a significant decrease in TC, with
our results showing up to a 30% reduction between 0 — 3% strain. The ripple effect AZ,

a measure of the degree of out-of-plane deformation, further amplifies the reduction in
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TC. The Green Kubo study on a larger sample size having prominent AZ has intrinsic
ripple effects, and when strain is applied, these two effects combine to reduce the TC
of graphene. Using the NMD results of graphene without a ripple, we conclude that
the ripple will alone decrease the TC by ~ 61% in the graphene samples. Thus these
findings suggest that careful control of strain and ripple effects could be employed to
tailor the thermal properties of graphene for specific applications for the design and

optimization of graphene-based thermal management systems.
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Chapter 7

Phonon Dynamics and Thermal

Properties in 2D FPU-{ Lattices

This chapter focuses on studying the thermal properties of a 2D system based
on the FPU-§ potential. Using SED method and NMD analysis, this work explores
for the first time important characteristics of phonon behavior, such as their lifetimes,
group velocities, and overall thermal conductivities in 2D. We fully investigate how
heat is conducted through anharmonic 2D systems modeled by the FPU-/ potential.
We look closely at the unusual way the thermal conductivity (TC) behaves in these
systems, especially as the system size grows. This study provides new insights into the

challenges of understanding heat transport in these materials.

In this study, we first investigate the thermal transport properties of a two-dimensional
square lattice system (Fig. 7.1) using the Green-Kubo method, incorporating the Fermi-
Pasta-Ulam (FPU)-3 potential (Vrpy) in Eq. (7.1):

1

Vepu(n) = 5772 + ZTI4 (7.1)
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where 1 = r — r( is the relative displacement of inter-particle distance () with respect
to the equilibrium distance ry. The term §3 is used to quantify the strength of quartic

anharmonic interaction which introduces the non-linearity into the system. The Green-
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Figure 7.1: Schematic of FPU square lattice joined with non-linear springs.

Kubo linear response theory [167] provides an alternative definition of thermal heat

conductivity k in the form of following expression for the TCs tensor:

) 1 n
ks = Iim = [ (a0 @ Js()e, (7.2)

where 7;(= I Aty p) is the integration timestep, Aty p is the time step in the molecular
dynamics simulation, I is the total number of integration steps and J is the heat current
vector (for detailed explanation please refer Section 3.3), while the other terms have
their usual meaning. As our GK model is homogeneous 2D non-linear square lattice,
the TCs is represented equally by any of the diagonal components within the transport
coefficient tensor as defined in Eq. (7.2) as k = ki = k,. We also utilize the SED

method to calculate the phonon properties.

The organization of this study is structured as follows. In Section 7.1, we outline
the methodology used for preparing FPU-/3 samples. Section 7.2.1 details the molecular
dynamics (MD) simulations conducted to support the Green-Kubo (GK) along with
the results obtained from the study. It is followed by the results for the SED based
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NMD approach in Section 7.2.2, where we calculate the phonon group velocities using
the harmonic lattice dynamics capabilities of the GULP package and determine phonon
lifetimes by fitting the SED data to a Lorentzian function. Additionally, this reports the
bulk thermal conductivities of FPU-§ systems utilizing the SED method. Finally, we
conclude in Section 7.3 by summarizing our findings and offering recommendations

for future research directions.

7.1 Sample Preparation

We consider a two-dimensional square lattice model based on the Fermi-Pasta-Ulam
(FPU)-$ potential governed by Eq. (7.1) where all numerical simulations with this po-
tential have been performed with 8 = 0.025. The atoms are arranged to form a uni-
form grid structure, where each atom interacts only with its nearest neighbors. With-
out loss of generality, the equilibrium distance between neighboring atoms is set to 1.0
L] units, which defines the uniform lattice spacing, a = 1.0 LJ units. Each atom in the
lattice is placed at a position defined by the integer indices (i, j), where 1 < i < N,
and 1 < j < N, corresponding to the number of unit cells in the z and y directions,

respectively. The origin of our Cartesian reference frame is chosen such that the two-

0
ij7

dimensional equilibrium position vector, ry., aligns with (¢, j).

To simplify the model and reflect the short-range nature of interatomic interactions
Vepu(n) (as given in Eq. (7.1)), which depends on the relative displacement 7 with
respect to the equilibrium distance 7y = 1 L] units, we use a cutoff radius of 1.10 L] units
beyond which the interaction potential is considered negligible. The mass of each atom
is, without loss of generality, set to 1.0 L] units. Additionally, the energy parameter ¢
and the time unit are both defined as 1.0 L] units, ensuring the system is normalized and
dimensionless. This choice of units provides a consistent framework for our numerical
simulations and simplifies the equations of motion. For the same physical unit cell
system, we first study with Green-Kubo method which is later followed by SED based
study.
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7.2 Results

7.2.1 Green-Kubo

The TCs of our system was determined using the Green-Kubo formalism, which relies
on analyzing the heat current autocorrelation function (HCACF) over an extended sim-
ulation period. The MD package LAMMPS [149] has been used for all our simulations.
We used a 10 x 10 x 1 supercell containing 100 atoms to balance computational effi-
ciency with the need to capture essential thermal transport features. This supercell size
was chosen as it provides a sufficiently large system to reduce finite-size effects while

remaining computationally feasible.

To initialize our simulations, we equilibrated the system using the canonical en-
semble (NVT) with a Nosé-Hoover thermostat. The Nosé-Hoover thermostat was se-
lected because it provides an efficient way to control the temperature and ensure that
the system samples the correct canonical distribution. The temperature was maintained
atT = 8.618 x107% LJ units (T is the reduced temperature in units of the Boltzmann con-
stant) for 10° timesteps. This temperature value was specifically chosen based on the
reduced units of the Lennard-Jones system, ensuring consistency and enabling mean-
ingful comparison with theoretical models. After the equilibration phase, we removed
the thermostat and transitioned to the microcanonical ensemble (NVE) for another 10°
timesteps. The NVE ensemble was used to conserve the total energy of the system,
which is crucial for the Green-Kubo analysis. By using the NVE ensemble, we allow
the system to evolve naturally, without external influences, thereby providing an accu-

rate representation of energy transport.

The production run, essential for calculating the HCACEF, was carried out over
2 x 107 timesteps. This extensive duration was necessary to ensure that the HCACF
decays fully and that enough data points are collected to perform a robust statistical
analysis. The heat current vector, J(t), was sampled at every single timestep, providing
high temporal resolution. In order to enhance the reliability of our TCs results and mini-
mize statistical errors, we performed 30 separate simulations. Each of these simulations

was initialized with distinct, randomly generated conditions to improve statistical av-
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eraging. This method effectively reduces noise and allows us to better capture the true
thermal characteristics of the system, given the inherent fluctuations associated with

thermal transport properties.

The time-discretized TCs k, as given by Eq. (7.3), was computed from the HCACF,
(J(t) ® J(0)), starting from the point where the autocorrelation function first decays to
zero because it marks the region where meaningful integration can occur ( Fig. 7.2).

This occurs at ~ 3 x 10* timesteps.

—~~
]
—

—

Normalized < Jyx(t)J3 (0) >

-0.4

Figure 7.2: Normalized HCACF for 30 different ensemble replicas run under the NVE

ensemble.

‘ AtMD I 1 S—a
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Here At)p is the time step in the molecular dynamics simulation taken as 0.01 L] units,
V is the volume of system which is 100 L] units of distance, kp is the Boltzmann constant,
T is the same temperature as was chosen for the GK method equal to 8.618 x 107° L]
units. J,4, and J, are heat current vectors at time steps a + b and b, respectively whose
dyadic product gives the HCACF. The HCACF is summed over I intervals where
being the number of starting points for calculating autocorrelations which was taken

at every 10° timesteps in order to improve the accuracy of the autocorrelation. A total
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production run timestep of S = 2 x 107 ensured that S > [ for improving the statistical

reliability of the result Section 3.3.

The average TCs derived from these simulations exhibits a logarithmic depen-
dence on time, as displayed in the semi-log plot in Figure 7.3. This logarithmic behavior
is in accordance with the several previous studies which also showed the logarithmic
growth on any finite system for 2D case [120, 123, 124] which validates our findings for

the present set of studies.
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Figure 7.3: kg, o In(t) dependence for a system size of 10 x 10 square unit cells. The
data points have been obtained by averaging over 30 different initial conditons in order

to get a better statistical averaging for the system.

The initial focus on the Green-Kubo (GK) method, which studies TC as a function
of the logarithm of time, In(¢), provides a foundation for understanding the temporal
evolution of heat transport properties in our system. The reason for starting with this
approach is rooted in the observation that asymptotic behavior over long timescales is
expected to be analogous to the asymptotic behavior in space, as observed by Lippi and
Levi [120] and given by the relationship N ~ ¢r. Here, N represents the spatial system
size, 7 denotes the integration time, and ¢ is a proportionality constant [120]. How-
ever, this relation also highlights the presence of finite size effects when the integration
time, 7, becomes significantly larger than N/c. These effects, which stem from the finite

spatial extent of the system, have been effectively observed by analyzing the behavior
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of C(w), the Fourier transform of the time correlation function C(7), particularly in the
low-frequency range. The authors [120] also argue that for different values of IV, the
curves of C'(w) align well up to a certain frequency, w.(N) ~ ¢/N, beyond which fi-
nite size effects cause them to diverge from the expected asymptotic trend. This finite
size behaviour motivates our transition to the Normal Mode Decomposition (NMD)
method, where we study TC as a function of the logarithm of system size, In(NV). This
spatial approach helps us understand how thermal transport properties scale with the
system size and complements the temporal insights gained from the GK method. More-
over, the GK method effectively calculates TCs by analyzing heat current fluctuations,
however, it falls short in providing insights into specific phonon modes and their con-
tributions to thermal transport. The SED approach complements this by resolving the

vibrational characteristics of phonons, such as their lifetimes and group velocities.

7.2.2 SED

7.2.2.1 Simulation details

As explained in the Section 7.1, the unit cell information of the SED based system re-
mains the same. We utilized the LAMMPS molecular dynamics software package [149]
to perform our simulations in order to get the atomic positions and their respective ve-
locities and at given timesteps. We prepare the simulation setup for our 2D square
lattice model based on the FPU-§ potential, employing periodic boundary conditions
(PBC) in all directions. The molecular dynamics (MD) simulations were conducted
using a timestep of 0.01 L] units of time, ensuring numerical stability and accurate in-
tegration of the equations of motion. The simulation begins with equilibration in the
canonical ensemble (NVT) for 10° timesteps, controlled using a Nosé-Hoover thermo-
stat. This ensures that the system reaches the target temperature of 8.618 x 1076 LJ
units. Following equilibration, the thermostat is removed, and the system is evolved
under the microcanonical ensemble (NVE) for another 10° timesteps to conserve total
energy and achieve a steady state. To capture phonon properties with high resolution,

we then record the atomic positions and velocities during a subsequent NVE simulation
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run, lasting 2% timesteps. This extensive duration guarantees that the system samples
the phonon spectrum comprehensively, particularly capturing low-frequency modes.
We set the step size for data output as 27 timesteps, chosen to ensure that the high-
est frequency lattice vibrations are captured accurately using the spectral analysis. To
achieve statistical averaging, the entire procedure is repeated for 10 different ensembles
for each of the system sizes chosen in the current study, each initialized with unique ran-
dom velocities. This averaging process reduces noise and increases the reliability of the
calculated phonon properties, providing a comprehensive understanding of thermal

transport in the 2D FPU-/ lattice model.

Similar to our previous studies, the choice of wavevector is crucial in the NMD
analysis, as selecting an incorrect wavevector can lead to inaccurate resonant peaks and
phonon properties [151]. We adopt the approach by Qiu and Ruan [51, 52], utilizing the
symmetry of the Brillouin Zone (BZ) and the simplicity offered by BZ discretization.
Specifically, we select the allowed wavevectors in the full BZ. For a chosen wavevec-
tor in the full BZ, we calculate the SEDs for all these symmetric copies, average them,
and further average over ten MD simulation runs with different initial velocities. This

process is carried out before fitting the SED curves to extract the phonon properties.

7.2.2.2 Single-size system analysis

Using the GULP package, which is based on harmonic lattice dynamics, we calcu-
late the phonon dispersion curves along the symmetric I'-X direction, as illustrated in
Fig. 7.4. These results satisfy the analytical relations given below which can be derived
easily for the harmonic part of the FPU-/ potential modeling the 2D square lattices:

KRy

sin? s (,L)222

sin Y| | (7.4)

w1:2 9

where w, , are the dispersion frequencies corresponding to the wavevector k = k,i +
Iiyj, 1 and 2 correspond to the LA and TA branches, and i andj are the unit vectors,
respectively, along x and y axes. Following these relations, the magnitudes of the group

KEx,y

velocities for two branches 1 (LA) and 2 (TA) are v, , = ‘cos 5*|, and therefore, we
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Figure 7.4: Dispersion of FPU-/ in the hi-symmetry I'-X direction. For the 2D system,
only 2 acoustic branches, TA and LA branches, exist, which are highly degenerate.

can express these magnitudes of group velocities as

Voo = cos(%).sgn(sin(%)) (7.5a)

sgn = —1, sin(=) <0

sgn =0, sin(=X)=0 (7.5b)

2

sgn =1, sin(=*) >0
\

These results are also consistent with the dispersion curves reported by Benet-

tin [168].

As explained in the previous chapters, once satisfactory results for the dispersion
curves have been obtained, we calculate the SEDs using Eq. (3.11) and fit the data with
the Lorentzian function in Eq. (3.12). The Lorentzian curve fitting process is highly
non-linear and performed in a semi-automated manner, where the fitting parameters
are adjusted by visually inspecting each fit based on the system’s length and width.
Once these parameters are optimized, they can be applied to fit the SED curves of other
samples with varying lengths and widths. Fig. 7.5 presents the Lorentzian fit for the

TA phonon mode at the wavevector x = (—0.48, —0.46, 0.0) in the reduced coordinate
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Figure 7.5: The Lorentzian function fits for the SED data for the SLG sample with 50 x
50 x 1 primitive unit cells are presented. The LA dispersion branch for the wavevector
Kk = (—0.48, —0.46, 0.0) is shown for illustrative purposes. The red dashed line indicates

the resonant frequency (wy) for this particular mode.

system of reciprocal space for the 28 x 28 x 1 primitive unit cells. Similar fits are observed

for other phonon modes.

To gain a deeper understanding into the behavior of individual phonon modes, we
choose a system size of N = 50 x 50 x 1. This choice is deliberate, as it represents the
largest system size analyzed in our size-dependent study. In a two-dimensional sys-
tem, only two acoustic modes exist: the transverse acoustic (TA) and the longitudinal
acoustic (LA) modes which are degenerate along not only the hi-symmetry directions
but also across the entire BZ for square lattices. We differentiate these modes based on
their respective eigenvectors with components (0, 1) and (1, 0) in the reciprocal space

as TA and LA mode respectively. First, we examine the phonon lifetime distribution.

In order to get a quantitatively clearer picture of the dominant modes contributing
to the phonon properties such as 7 and v,, we will try to calculate an average measure
of these properties denoted as 7 and vy, respectively, whose calculation we explain now.
As observed in the lifetime distribution, there are specific w’s where the phonon modes
are concentrated, and therefore, we divide the whole w domain into bins. Each bin has
a width of Aw = 0.22 L] units of frequency. We then get the total number of allowed
TA or LA modes which lie in the frequency range [w,w + Aw) and this term from now
on will be termed as modes per bin (MPB), as shown in Fig. 7.6d. We then sum all 7’s

(>_ 1) which lie in the [w,w + Aw) and then divide the sum by the MPB in the same
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contribute almost equally
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range to get T as shown in Fig. 7.6a. Further, the v, distribution is shown in Fig. 7.6b
which follows the Eq. (7.5). A similar procedure like 7 is followed to get k which shows
that the lower frequency modes contribute more in terms of per mode than the higher
frequency modes because of their higher lifetimes as shown in Fig. 7.6c. These modes
are distinguished into LA and TA modes and their contributions is almost equal (as

shown in Fig. 7.6d) to the overall TC because of the homogeneous nature of the system.

7.2.2.3 Size-dependent analysis

In our previous studies (Section 4.2.3), we established the size-dependent nature of the
SED method based normal mode decomposition (NMD) analysis. Thus, we extend our
investigation to analyse various system sizes. The study focuses on square lattices, and
given the symmetric nature of the Brillouin Zone (BZ), which itself forms a square, we

limit our TC calculations to the full BZ for all system sizes.

Similar to previous Section 7.2.2.2 and following the similar approach, we study
N = N, x N, primitive unit cell samples, where N = 16, 20, 24, 30, 40, 50 respectively.
Having obtained the full BZ contribution for each of the respective sizes, we try to fit the
data points for the TC on a natural logarithmic scale of size N. The results, presented
in Fig. 7.7d, reveal a logarithmic divergence of TC with increasing size N which follows

the following linear fitting equation with In V:

Lippiand Livi [120] give an analytical justification for this logarithmic dependence
with the help of normal mode coordinates and the linear response theory based self-
consistent mode coupling theory (SMT)[120]. It can be shown that the ensemble aver-
age of the heat flux auto-correlation function is directly proportional to 1/¢. This means,
the Green-Kubo expression for the TC in Eq. (7.2) becomes directly proportional to In ¢,
and since the asymptotic behavior in space is equivalent to the asymptotic behavior
in time for the model [120], i.e system size N = ¢, where ¢ is speed of sound in the
non-linear medium, then k o In N. This size-dependent behavior can be attributed to
the increasing number of contributing phonon modes as the system size grows. As the
system size N increases, more modes become available for thermal transport, leading

to the observed logarithmic scaling.
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To further understand the origins of this trend, we examine the two critical compo-
nents of TC: the phonon group velocity and phonon lifetimes. Specifically, we analyze
the root mean square (rms) of group velocities, v, . and the average phonon lifetimes
across different system sizes N. Rather than focusing on individual acoustic modes,
we take averages over all available phonon modes within the full BZ. The calculated
value of v; _shows a steep increase for the small system size and then it tends towards
a constant value of 0.5 L] units for the larger system size as shown in Fig. 7.8a where

vi = 0.5 — 1/N relationship is being followed.

On the other hand, (7) increases as the system size increases. Thus this trend
in (7) is the main reason for the overall logarithmic increase in TC which was shown
earlier in Fig. 7.7d. Now, similar to Section 5.3, we find that the correlation coefficients
between v and < 7 > along both x and y axes are close to 0 for different values of
N, ie., p(vi, ., < T >) =0, as shown in Fig. 7.8c. Therefore, k = > _,, ZfNQ CVoT R
2N?c,v; < T >, where 2N? is the total number of allowed modes in both v = 1 (LA)
and v = 2 (TA) branches of the full BZ. The approximation sign appears because there
exists a small non-zero correlation between v; and < 7 >. Also, for a given volume
V = N x N x 1 of the system, the classical mode specific volumetric specific heat can be

k 1 1

takenasc, = & =

¢ = v = xz,since kp = 1in the L] units. Therefore, by assuming that for

a general larger size system 2N?c, = 2, the estimated TC, Kegtm, for the full BZ becomes

K~ Kestmy = 2V < T > (7.6)

Erms

We calculated this kg, for different values of NV and found that k.., =~ 0.9k. With
the help of Eq. (7.6), therefore, it can be argued that the logarithmic divergence of the
thermal conductivity calculated only from full BZ modes is primarily due to the log-
arithmic divergence of < 7 > since vy, .2 remains the same for all higher values of N.
This is a significant result. In future, we intend to explore various /3 values, thereby
we intend to extend our model to more realistic solids where anharmonic effects play

a significant role.
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7.3 Summary

The motivation behind this work comes from the need to understand the thermal trans-
port properties in two-dimensional anharmonic solids, specifically within the context of
the FPU- model. Given the significance of TC in designing materials for advanced ap-
plications, especially where heat management is critical, our study aims to explain the
underlying mechanisms driving TC behavior in such systems. By employing the equi-
librium molecular dynamics-based Green-Kubo (GK) analysis and the SED method,

we systematically investigate how size and phonon properties influence TCs.

We began our investigation with the GK method to explore the time dependence of
TC. The analysis revealed that TC is proportional to In(¢). This logarithmic dependence
emphasizes the importance of temporal evolution in thermal transport and validates
findings from previous studies, thus ensuring the consistency and robustness of our
approach. Following the GK study, we transitioned to the NMD method to investigate
into phonon transport properties. Our first focus was on a detailed analysis of the N =
28 x 28 x 1 system size. This study highlighted the behavior of individual phonon
modes. We observed that the average lifetimes of TA and LA modes are comparable.

The TC contributions from the TA and the LA modes were found to be nearly equal.

Subsequently, we extended the NMD analysis to study the size-dependent behav-
ior of TC. The results revealed a logarithmic divergence of the TC with the system size
N. As the system size increased, more phonon modes participated in heat transport,
leading to an enhanced TC. We also found that the rms of group velocities for all modes,
v2 ., becomes constant for bigger system size N, however, the mean of all lifetimes,
< T >, keeps on increasing for as the system size increased. Through our correlation
based analysis, we then showed that the logarithmic divergence of the TC can be at-

tributed primarily to the 7 with respect to V.

Thus the complementary use of the GK and NMD methods provided a compre-
hensive understanding of thermal transport. The GK method established the temporal
aspects of TC behavior, while the NMD approach offered insight into spatial depen-
dencies and phonon properties across the frequency domain. Looking forward, future

research will focus on extending this analysis to varying anharmonicity parameters, 3,
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to develop a robust analytical model for the TCs. This model will enable better predic-
tive capabilities for real anharmonic materials, linking microscopic phonon behavior

with macroscopic thermal properties.
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Chapter 8

Conclusion

This thesis addresses the critical issue of thermal conductivity (TC) in low dimen-
sional materials, such as graphene and other two-dimensional structures, which are
increasingly important in modern technologies requiring effective heat dissipation. It
systematically investigates the factors influencing TC by employing advanced computa-
tional techniques, including both equilibrium and non-equilibrium molecular dynam-
ics (MD) simulations. We begin with a comprehensive analysis of graphene-based sys-
tems, specifically single layer graphene (SLG), AB-stacked bilayer graphene (AB-BLG),
and twisted bilayer graphene (tBLG), focusing on how interlayer interactions in bilayer
graphene and their respective phonon modes contribute to the heat transport along
with the study of size effects. The research then explores the impacts of structural mod-
ifications, including grain boundaries (GBs) with different misorientation angles and
strain, on thermal properties. Furthermore, we examine the thermal transport charac-
teristics of two-dimensional anharmonic solids using the FPU-5 model, highlighting

how anharmonicity and finite size effects influence TC behavior.

To explore these factors, we utilize MD simulations to model atomic behavior and
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interactions, providing insights into heat transport mechanisms at a microscopic level.
We apply techniques such as the Non-equilibrium molecular dynamics based Direct
method to get the size dependent TC, equilibrium molecular dynamic based Green-
Kubo (GK) and the spectral energy density (SED) based normal mode decomposition
(NMD) to quantify the contributions of various phonon modes—vibrational patterns
critical for heat conduction. By integrating these approaches, we capture the dynamic
behavior of phonons over time and their spatial distributions, leading to a deeper un-

derstanding of thermal transport in these materials.

The following sections will briefly highlight the main results. We will first ana-
lyze how size affects TC in the single layer and bilayer graphene systems (chapter 4).
Next, we will delve into the impact misorientation angles in SLG with GB (chapter 5),
followed by an investigation of strain and ripple effects in SLG (chapter 6). Finally, we
will present our findings on the FPU-3 model, focusing on the fundamental aspects
of anharmonic heat transport, including both temporal and spatial characteristics of
phonon properties (chapter 7). Through this structured investigation, we aim to en-
hance our knowledge of thermal transport phenomena in low-dimensional materials

and contribute to future advancements in thermal management technologies.

The key takeaways from these studies are as follows:

e Phonon properties of SLG, AB-BLG, and tBLG

In this work, we have thoroughly investigated the size-dependent TC of SLG,
AB-stacked bilayer graphene (AB-BLG), and twisted bilayer graphene (tBLG) us-
ing the Non-Equilibrium Molecular Dynamics (NEMD) direct method. The heat
flux in our simulations was calculated by employing Irving-Kirkwood’s defini-
tion, ensuring that our results are consistent and reliable. A critical assessment of
the widely used TWD method for heat flux calculation has also been presented,
where we demonstrate that this method significantly overestimates the TC values
and should not be relied upon for accurate measurements. Our findings show
that the extrapolated bulk TC values obtained from the NEMD direct method
are in close agreement with those obtained using the NMD method for the SLG
and tBLG systems. The NMD method, known for its sensitivity to system size,

serves as an effective validation of our results. Importantly, we adopted the LD
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theory-based SED ® approach, as opposed to the alternative phonon SED ¢’ ap-
proach. The latter introduces excessive scattering into the relaxation time cal-
culations and has proven to be unreliable. For AB-BLG and the 21.78° tBLG sys-
tems, our phonon lifetime calculations using the NMD-based approach remained
consistent. This consistency contrasts with previous approaches that employed
Molecular Dynamics (MD) for obtaining dispersion curves but relied on Density
Functional Theory (DFT)-based packages for phonon lifetime calculations. We
have shown that this mixed approach can introduce discrepancies, whereas our
method maintains coherence between the simulation data and theoretical predic-

tions.

We further investigated the contributions of basic phonon modes to the TC of the
graphene samples. Our analysis in the first quadrant of the Brillouin Zones (BZs)
along both high-symmetry and non-symmetric directions revealed that, for SLG,
the out-of-plane acoustic (ZA), transverse acoustic (TA), and longitudinal acous-
tic (LA) modes contribute to TC in increasing order along all directions. How-
ever, this trend does not hold for the bilayer systems. In the tBLG samples, op-
tical phonon modes dominate TC contributions, while in AB-BLG, both acoustic
modes and non-symmetric optical modes have comparable contributions. High-
symmetry phonon modes were found to make the most significant contributions
to TC across all three graphene systems. A detailed analysis of the phonon group
velocities and lifetimes provided further insights: SLG and AB-BLG exhibit simi-
lar average group velocities (8.4 and 8.3 km/s, respectively), which are 30% higher
than that of tBLG (6.4 km/s). Conversely, AB-BLG and tBLG have comparable
average lifetimes (3.9 and 3.8 ps), which are 43% lower than the average phonon
lifetime of SLG (6.9 ps). This indicates that the bulk TC, which depends on the
product k oc v27, should be approximately 55% and 28% of the SLG bulk TC for
AB-BLG and tBLG, respectively.

Our results using the NMD method gave bulk TC values for AB-BLG and tBLG
that are approximately 57% and 30% of the bulk TC of SLG. This strong agreement
between theoretical predictions and simulation results underscores the validity of

our approach.
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e Phonon properties of xPC-G

Building on our investigation into graphene systems, we extended our analysis to
predict the phonon properties of xXPC-G samples with seven different misorien-
tation angles using equilibrium Molecular Dynamics (MD) simulations coupled
with the NMD method. This comprehensive study revealed a strong dependence
of the TC of xPC-G samples on their misorientation angles, underscoring the crit-

ical role of structural orientation in thermal transport.

A key finding from this work is the lack of correlation between the square of the
group velocity components along the x and y axes and the phonon lifetimes for
all misorientation angles studied. This observation simplifies the calculation of
TC, allowing us to represent it in terms of an average phonon mode. Specifically,
the group velocity components of this average mode are taken as the root mean
square (rms) of the group velocity components of all phonon modes, while the
phonon lifetime is the mean of all individual lifetimes. This approach provides a
practical framework for estimating TC without the need to consider each phonon

mode individually.

To explain the anisotropy observed in TC components for certain misorientation
angles, we examined the differences in the rms values of group velocity com-
ponents along the x and y directions. This anisotropy arises from the structural
differences induced by misorientation, highlighting the complex relationship be-
tween the atomic arrangement and phonon transport. Interestingly, the density of
states (DOS) for all xPC-G samples remained independent of the misorientation
angles, suggesting that the overall vibrational spectrum is unaffected, even as the
TC components vary significantly. We further analyzed the distribution functions
of phonon properties based on the DOS, plotting them as semi-log plots against
the phonon normal frequencies. The distributions of the group velocity compo-
nents followed an exponential decay, while the distribution of phonon lifetimes
exhibited a piecewise constant behavior with respect to frequency. This behavior
was reflected in the distribution of TC components, which also displayed an ex-
ponentially decaying trend with frequency. To quantify these distributions, we

provided parameters for the exponential and piecewise constant functions de-
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scribing the group velocity components and lifetimes, respectively. Using these
parameters, we developed an alternative measure of TC, which we found to be
within a £60% range of the actual TC values, demonstrating the robustness and

applicability of our approach.

Finally, we conducted a size-dependent analysis for two specific misorientation
angles, 21.78° and 32.20°, calculating their bulk TC components. Our results showed
a significant reduction in TC, with decreases ranging from 34% to 62% compared
to the bulk TC values of pristine graphene. These findings emphasize the sub-

stantial impact of misorientation on thermal transport.

Strain and ripple effect on thermal properties of SLG

Extending our exploration of thermal transport in graphene-based systems, we
have conducted an in-depth study on how strain and ripple effects influence the
TC of SLG. Our computational investigation started with a small sample size, char-
acterized by minimal out-of-plane fluctuations, AZ, which served as a baseline to
isolate the effects of strain. Using Normal Mode Decomposition (NMD) analysis,
we observed that applying strain, particularly along the zigzag direction, leads to
significant alterations in the phonon dispersion relations, most notably impacting
the out-of-plane acoustic (ZA) modes. Our analysis revealed that strain causes a
shift in the ZA mode dispersion from a quadratic to a linear dependence between
frequency and wavevector. This transition is directly linked to a pronounced re-
duction in the group velocity, v,, of the ZA modes. The primary reason for this
reduction is the weakening of bond stiffness under strain, which inhibits phonon
propagation. Additionally, we found that the phonon density of states (PDOS)
shifts to lower frequencies as the strain increases, reflecting the altered vibrational
landscape of the strained graphene lattice. The NMD analysis provided further
insights into the contributions of individual phonon modes to TC. The longitu-
dinal acoustic (LA) modes emerged as the highest contributors, followed by the
transverse acoustic (TA) modes, while the transverse optical (TO) and longitudi-
nal optical (LO) modes consistently contributed the least across all levels of strain.
Interestingly, our results showed that phonon lifetimes, 7, were relatively insen-

sitive to strain, suggesting that the primary mechanism for TC reduction under
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strain is the decrease in group velocity rather than changes in phonon lifetimes.

Quantitatively, our findings indicate that TC decreases significantly with strain,
with up to a 30% reduction observed between 0-3% strain. Beyond the effects
of strain, we also examined the impact of ripples, characterized by AZ, which
represent out-of-plane deformations. The presence of ripples further amplifies
the reduction in TC. Using a GK analysis on a larger sample size with pronounced
AZ fluctuations, we found that the intrinsic ripple effects, combined with applied
strain, resulted in an even greater TC reduction. Specifically, using NMD results
for graphene without ripples, we estimated that ripples alone could reduce TC by

approximately 61% in larger samples.

Thermal transport in 2D FPU-{ systems

Lastly, motivated by the need to understand the thermal transport properties of
two-dimensional anharmonic solids, we studied the FPU-35 model. This model is
particularly relevant for designing materials for advanced applications where ef-
fective heat management is crucial. Our goal was to analyse the underlying mech-
anisms governing TC behavior in these systems. To achieve this, we employed
equilibrium molecular dynamics-based GK method and the NMD method, each

providing unique insights into phonon transport.

Firstly with GK method, we explored the time dependence of TC. The analysis
revealed a logarithmic relationship, with TC scaling as In(¢). This finding un-
derscores the significance of temporal evolution in thermal transport and aligns
with prior research, reinforcing the robustness and consistency of our results.
The logarithmic dependence highlights how phonon contributions evolve over
time, providing a crucial understanding of heat conduction dynamics in anhar-
monic systems. We then transitioned to the NMD method to delve deeper into
the phonon transport properties. We began with a focused analysis of a system
size of N = 28 x 28 x 1. This detailed examination shed light on the behavior of
individual phonon modes. Our findings revealed that the average lifetimes of the
TA and LA modes were comparable. This behavior can be attributed to the in-
trinsic symmetry of the FPU-f potential, with our analytical fits capturing these

unique phononic characteristics. Expanding our analysis, we also explored the
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size-dependent behavior of the TC using the NMD method. The results demon-
strated a logarithmic divergence of the TC with increasing system size N. As the
system size grew, an increasing number of phonon modes participated in heat
transport, resulting in enhanced TC. Remarkably, critical parameters, v sharply
increases and then becomes constant at 0.5 L] units with N. Whereas, < 7 > dis-
played a consistent increase with in(N), emphasizing the pronounced size effects
characteristic of the FPU-73 lattice. With the help of a correlation analysis between
ve and < 7 >, we were able to argue that the logarithmic dependence of the
TC on N can be attributed to the 7 with respect to N. Thus, the combined use of
the GK and the NMD methods provided a comprehensive understanding of the
thermal transport in the FPU-§ system. The GK method measured the temporal
aspects of TC behavior, while the NMD approach revealed spatial dependencies

and detailed phonon properties for different system sizes.
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Future scope

In light of the findings from this research, several avenues for future work can be iden-

tified:

e Future research should extend the analysis to twisted bilayer graphene (tBLG)
systems with various twist angles. This study will help us enhance our under-
standing of thermal transport mechanisms in tBLGs, which may exhibit unique

thermal properties based on their geometric configurations.

e The frequency-dependent distribution functions established for the root mean
square (rms) group velocity components and phonon lifetimes for the xPC-G
samples can be integrated into multiscale semi-analytical and numerical solutions
of the Boltzmann Transport Equation (BTE). This approach will provide a robust
framework for the multiscale modeling of TC in polycrystalline graphene materi-

als, facilitating more precise predictions of their thermal behavior.

e The study of the strain and ripple effects plays a critical role in optimizing the
thermal properties of graphene. Modulation of these factors could be instrumen-
tal in modifying TC for specific applications, thereby methods being developed
in future to study the TC of graphene based materials will be more robust if one

takes into account the strain and ripple effects.

e We propose to vary the anharmonicity parameter, 3, of the FPU-/ based lattices
of different 2D shapes in order to develop a more general analytical model for TC
for such systems. This model will help improve the predictive capabilities for real
anharmonic materials, establishing a crucial link between microscopic phonon
behavior and macroscopic thermal properties. Such research will significantly
contribute to the development of materials with customized thermal properties

suitable for diverse technological applications.
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